Luciferase Reporter Gene (luciferase + reporter_gene)

Distribution by Scientific Domains


Selected Abstracts


Putative association of a TLR9 promoter polymorphism with atopic eczema

ALLERGY, Issue 7 2007
N. Novak
Background:, Toll-like receptors (TLR) play a pivotal role in the induction of first-line defense mechanisms of the innate immune system and trigger adaptive immune responses to microbial pathogens. Genetic variations in innate immunity genes have been reported to be associated with a range of inflammatory disorders. Deficiencies on the level of immunity receptors such as pathogen-recognition receptors are suspected to affect the maturation of our immune system and to avail thereby the high prevalence of atopic diseases and susceptibility of atopic patients to microbial infections. Aims of the study:, We evaluated TLR9 as susceptibility gene for atopic eczema (AE). Methods:, Analyses of four tag single-nucleotide polymorphisms in two panels of families containing a total of 483 parent-affected offspring trios as well as a cohort of 274 unrelated adult AE cases and 252 hypernormal population-based controls have been performed. Results:, In both family cohorts, polymorphism C-1237T, which is located within the promoter region of the TLR9 gene, was significantly associated with AE, in particular the intrinsic subtype of AE. No associations were seen in the case,control cohort. Luciferase reporter gene assays revealed significantly higher promoter activity of the TT allelic variant at this single nucleotide polymorphism site. Conclusion:, These observations suggest that the TLR9 promoter polymorphism C-1237T might affect AE susceptibility in particular in patients with the intrinsic variant of AE. [source]


Cigarette smoke condensate induces nuclear factor kappa-b activity and proangiogenic growth factors in aerodigestive cells,

THE LARYNGOSCOPE, Issue 8 2010
Joseph Rohrer MD
Abstract Objectives/Hypothesis: Aerodigestive cancer risk of both lung and head and neck cancers has been linked to the genotoxic effects of tobacco use. These effects include upregulation of nuclear factor kappa-B (NF,B) and its downstream products associated with both lung and head and neck cancer malignant progression. Study Design: Bench Research. Methods: In the present study we examined the effects of cigarette smoke condensate on functional activation of NF,B in human papillomavirus (HPV)-transformed oral cavity cells (HOK 16B cells) and transformed bronchial epithelium (Beas2B cells) using the head and neck squamous cancer cell line, UMSCC 38, as a comparison. Luciferase reporter gene assays with two types of transiently transfected NF,B reporter genes were employed and downstream NF,B-dependent products, interleukin-6, interleukin-8, and vascular endothelial growth factor, were assayed by enzyme-linked immunosorbent assay. Results: All cell lines were able to dose dependently activate NF,B reporter genes after exposure to cigarette smoke condensate (P < .05). However, the HPV premalignant, transformed cell line had a much more robust NF,B response (3.45-fold) versus the squamous cancer cell line (1.62-fold) and SV40 transformed Beas2B (1.83). Both NF,B reporter genes had similar response curves. Conclusions: This study demonstrates cigarette smoke products might be more potent promoters of an NF,B-dependent progression from HPV+ premalignancy to cancer rather than after tumors are established. Future studies should focus on abrogating NF,B increases during malignant progression and premalignancy. This might be even more relevant in the HPV+ patient with premalignancy. Laryngoscope, 2010 [source]


Hypoxia and glucocorticoid signaling converge to regulate macrophage migration inhibitory factor gene expression

ARTHRITIS & RHEUMATISM, Issue 8 2009
Laura M. Elsby
Objective Macrophage migration inhibitory factor (MIF) is a proinflammatory mediator involved in the pathogenesis of rheumatoid arthritis. This study was undertaken to identify the MIF promoter elements responsible for regulating gene expression. Methods Luciferase reporter gene assays were used to identify the MIF promoter sequence responsible for basal activity. Bioinformatic analysis was used to predict transcription factor binding sites, and electrophoretic mobility shift assay (EMSA) was used to demonstrate transcription factor binding. Chromatin immunoprecipitation (ChIP) was used to demonstrate transcription factor loading on the MIF promoter. Results We identified the minimal promoter sequence required for basal MIF promoter activity that was also capable of conferring glucocorticoid-dependent inhibition in a T lymphocyte model cell line. Deletion studies and EMSA revealed 2 elements in the MIF promoter that were responsible for basal promoter activity. The 5, element binds CREB/activating transcription factor 1, and the 3, element is a functional hypoxia-responsive element binding hypoxia-inducible factor 1,. Further studies demonstrated that the cis elements are both required for glucocorticoid-dependent inhibition. ChIP demonstrated glucocorticoid-dependent recruitment of glucocorticoid receptor , to the MIF promoter in lymphocytes within 1 hour of treatment and a concomitant decrease in acetylated histone H3. Conclusion Our findings indicate that hypoxia and glucocorticoid signaling converge on a single element regulating MIF; this regulatory unit is a potential interacting node for microenvironment sensing of oxygen tension and glucocorticoid action in foci of inflammation. [source]


Single nucleotide polymorphisms of 17,-hydroxysteroid dehydrogenase type 7 gene: Mechanism of estramustine-related adverse reactions?

INTERNATIONAL JOURNAL OF UROLOGY, Issue 10 2009
Takeshi Ozeki
Objectives: To investigate the influence of single nucleotide polymorphisms (SNP) on transcription of the 17,-hydroxysteroid dehydrogenase (HSD17B7) gene. Methods: Luciferase reporter genes containing a 5,-flanking of the HSD17B7 gene, as well as the sequence around the SNP, were transfected into LNCaP and DU145 cells. Then, luciferase assays were carried out. Results: The presence of the G allele resulted in an increase of transcriptional activity derived from the 5,-flanking region of the HSD17B7 gene by 270% and 370% in LNCaP and DU145 cells, respectively. Transcriptional activity of the HSD17B7 gene containing the G allele was higher than that of the C allele. Conclusions: The transcriptional activity of the HSD17B7 gene containing the G allele is higher than that of the C allele. This difference in HSD17B7 expression may regulate the risk of peripheral edema as an adverse reaction induced by estramustine phosphate sodium. [source]


Estrogenic endpoints in fish early life-stage tests: Luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2006
Rinus Bogers
Abstract This study incorporated specific endpoints for estrogenic activity in the early life-stage (ELS) test, as described in Guideline 210 of the Organization for Economic Cooperation and Development and traditionally used for toxicity screening of chemicals. A transgenic zebrafish model expressing an estrogen receptor,mediated luciferase reporter gene was exposed to ethi-nylestradiol (EE2), and luciferase activity as well as vitellogenin (VTG) was measured. Concentrations of EE2 were tested at 1, 3, or 10 ng/L for 30 d from fertilization or during only the last 4 d with dimethylsulfoxide (DMSO) as presolvent (0.01%). Exposure to EE2 induced no toxic effects. Mean body weights were significantly higher in groups exposed for 30 d in the presence of DMSO, but condition factors were not affected. Significant luciferase and VTG induction occurred following 30-d exposure (3 and 10 ng EE2/L), while only VTG levels were affected in the 4-d exposure (10 ng EE2/L). This study demonstrated the usefulness of incorporating estrogenic endpoints in the OECD ELS test, fitting the requirements for screening estrogenic activity of chemicals. Quantitative measurement of both VTG and luciferase activity proved to be rapid and sensitive. Additional value of using transgenic zebrafish lies in combining VTG measurement with the more mechanistic approach of luciferase induction in one experiment. [source]


Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals

FEBS JOURNAL, Issue 16 2009
Joan Duran
The ubiquitous isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (uPFK-2), a product of the Pfkfb3 gene, plays a crucial role in the control of glycolytic flux. In this study, we demonstrate that Pfkfb3 gene expression is increased in streptozotocin-induced diabetic mouse liver. The Pfkfb3/-3566 promoter construct linked to the luciferase reporter gene was delivered to the liver via hydrodynamic gene transfer. This promoter was upregulated in streptozotocin-induced diabetic mouse liver compared with transfected healthy cohorts. In addition, increases were observed in Pfkfb3 mRNA and uPFK-2 protein levels, and intrahepatic fructose-2,6-bisphosphate concentration. During streptozotocin-induced diabetes, phosphorylation of both p38 mitogen-activated protein kinase and Akt was detected, together with the overexpression of the proliferative markers cyclin D and E2F. These findings indicate that uPFK-2 induction is coupled to enhanced hepatocyte proliferation in streptozotocin-induced diabetic mouse liver. Expression decreased when hepatocytes were treated with either rapamycin or LY 294002. This shows that uPFK-2 regulation is phosphoinositide 3-kinase,Akt,mammalian target of rapamycin dependent. These results indicate that fructose-2,6-bisphosphate is essential to the maintenance of the glycolytic flux necessary for providing energy and biosynthetic precursors to dividing cells. [source]


Aly/,REF, a factor for mRNA transport, activates RH gene promoter function

FEBS JOURNAL, Issue 11 2005
Hiroshi Suganuma
The rhesus (Rh) blood group antigens are of considerable importance in transfusion medicine as well as in newborn or autoimmune hemolytic diseases due to their high antigenicity. We identified a major DNaseI hypersensitive site at the 5, flanking regions of both RHD and RHCE exon 1. A 34 bp fragment located at ,191 to ,158 from a translation start position, and containing the TCCCCTCCC sequence, was involved in enhancing promoter activity, which was assessed by luciferase reporter gene assay. A biotin-labelled 34 bp probe isolated an mRNA transporter protein, Aly/REF. The specific binding of Aly/REF to RH promoter in erythroid was confirmed by chromatin immunoprecipitation assay. The silencing of Aly/REF by siRNA reduced not only the RH promoter activity of the reporter gene but also transcription from the native genome. These facts provide second proof of Aly/REF as a transcription coactivator, initially identified as a coactivator for the TCR, enhancer function. Aly/REF might be a novel transcription cofactor for erythroid-specific genes. [source]


Identification of alternative promoter usage for the matrix Gla protein gene

FEBS JOURNAL, Issue 6 2005
Evidence for differential expression during early development in Xenopus laevis
Recent cloning of the Xenopus laevis (Xl) matrix Gla protein (MGP) gene indicated the presence of a conserved overall structure for this gene between mammals and amphibians but identified an additional 5,-exon, not detected in mammals, flanked by a functional, calcium-sensitive promoter, 3042 bp distant from the ATG initiation codon. DNA sequence analysis identified a second TATA-like DNA motif located at the 3, end of intron 1 and adjacent to the ATG-containing second exon. This putative proximal promoter was found to direct transcription of the luciferase reporter gene in the X. laevis A6 cell line, a result confirmed by subsequent deletion mutant analysis. RT-PCR analysis of XlMGP gene expression during early development identified a different temporal expression of the two transcripts, strongly suggesting differential promoter activation under the control of either maternally inherited or developmentally induced regulatory factors. Our results provide further evidence of the usefulness of nonmammalian model systems to elucidate the complex regulation of MGP gene transcription and raise the possibility that a similar mechanism of regulation may also exist in mammals. [source]


Molecular and functional characterization of novel CRFR1 isoforms from the skin

FEBS JOURNAL, Issue 13 2004
Alexander Pisarchik
In our continued studies on corticotropin releasing factor receptor (CRFR1) signaling in the skin, we tested functional activity of CRFR1,, e, f, g and h isoforms after transfection to COS cells. Both membrane-bound and soluble variants are translated in vivo into final protein products that undergo further post-translational modifications. CRFR1, was the only isoform coupled directly to adenylate cyclase with the exception of an artificial isoform (CRFR1h2) with the insertion of 37 amino acids between the ligand binding domain and the first extracellular loop that was capable of producing detectable levels of cyclic AMP (cAMP). Soluble isoforms could modulate cell response with CRFR1e attenuating and CRFR1h amplifying CRFR1,-coupled cAMP production stimulated by urocortin. Testing with plasmids containing the luciferase reporter gene, and inducible cis -elements (CRE, CaRE, SRE, AP1 or NF-,B) demonstrated that only CRFR1, was involved directly in the transcriptional regulation, while CRFR1g inhibited CRE activity. Significantly higher reporter gene expression by CRF was observed than that mediated by 4,-phorbol 12-myristate 13-acetate and forskolin alone, being compatible with the concomitant treatment by phorbol 12-myristate 13-acetate and forskolin. This suggests that both protein kinase A and C can be involved in CRF-dependent signal transduction. [source]


Structure and promoter analysis of the mouse membrane-bound transferrin-like protein (MTf) gene

FEBS JOURNAL, Issue 5 2001
Kazuko Nakamasu
Recently, we purified membrane-bound transferrin-like protein (MTf) from the plasma membrane of rabbit chondrocytes and showed that the expression levels of MTf protein and mRNA were much higher in cartilage than in other tissues [Kawamoto T, Pan, H., Yan, W., Ishida, H., Usui, E., Oda, R., Nakamasu, K., Noshiro, M., Kawashima-Ohya, Y., Fujii, M., Shintani, H., Okada, Y. & Kato, Y. (1998) Eur. J. Biochem.256, 503,509]. In this study, we isolated the MTf gene from a constructed mouse genomic library. The mouse MTf gene was encoded by a single-copy gene spanning ,,26 kb and consisting of 16 exons. The transcription-initiation site was located 157 bp upstream from the translation-start codon, and a TATA box was not found in the 5, flanking region. The mouse MTf gene was mapped on the B3 band of chromosome 16 by fluorescence in situ hybridization. Using primary chondrocytes, SK-MEL-28 (melanoma cell line), ATDC5 (chondrogenic cell line) and NIH3T3 (fibroblast cell line) cells, we carried out transient expression studies on various lengths of the 5, flanking region of the MTf gene fused to the luciferase reporter gene. Luciferase activity in SK-MEL-28 cells was higher than in primary chondrocytes. Although no luciferase activity was detectable in NIH3T3 cells, it was higher in chondrocytes than in ATDC5 chondrogenic cells. These findings were consistent with the levels of expression of MTf mRNA in these cells cultured under similar conditions. The patterns of increase and decrease in the luciferase activity in chondrocytes transfected with various 5, deleted constructs of the MTf promoter were similar to that in ATDC5 cells, but differed from that in SK-MEL-28 cells. The findings obtained with primary chondrocytes suggest that the regions between ,693 and ,444 and between ,1635 and ,1213 contain positive and negative cis -acting elements, respectively. The chondrocyte-specific expression of the MTf gene could be regulated via these regulatory elements in the promoter region. [source]


Heregulin and forskolin-induced cyclin D3 expression in Schwann cells: Role of a CCAAT promoter element and CCAAT enhancer binding protein

GLIA, Issue 3 2004
Luis Fuentealba
Abstract Heregulin, a polypeptide growth factor, and forskolin, an adenylyl cyclase activator, synergistically stimulate expression of cyclin D3 and cell division in Schwann cells. Heregulin induces expression in Schwann cells of a luciferase reporter gene linked to the cyclin D3 promoter. Forskolin markedly augments reporter expression in the presence of heregulin. Deletion analysis identified several promoter sites that contribute to high-level reporter expression in heregulin- and forskolin-treated Schwann cells. A promoter fragment that contains 103 bp of 5,-flanking sequence produced significant reporter expression in heregulin- and forskolin-stimulated cells. Deletion of a consensus CCAAT site within this promoter fragment caused a nearly complete loss of reporter expression. Similar results were obtained when CCAAT site mutations were introduced into the promoter. Heregulin and forskolin increased steady-state levels of CCAAT/enhancer binding protein-, (C/EBP,) in Schwann cells. Mobility shift assays identified proteins in Schwann cell nuclear extracts that formed stable complexes with the cyclin D3 CCAAT promoter element and were disrupted by anti-C/EBP, antibody. Transfection of Schwann cells with C/EBP, cDNA increased cyclin D3 reporter expression. In contrast to these results, mutation of a cAMP response element in the cyclin D3 promoter had only a modest effect on heregulin- and forskolin-stimulated reporter expression. These findings demonstrate that C/EBP, plays a key role in the heregulin and cAMP-dependent regulation of cyclin D3 expression in Schwann cells. © 2003 Wiley-Liss, Inc. [source]


Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells

INFLAMMATORY BOWEL DISEASES, Issue 3 2010
Darab Ghadimi
Abstract Background and Aim: The intestinal epithelium is constantly exposed to high levels of genetic material like bacterial DNA. Under normal physiological conditions, the intestinal epithelial monolayer as a formidable dynamic barrier with a high-polarity structure facilitates only a controlled and selective flux on components between the lumen and the underlining mucosa and even is able to facilitate structure-based macromolecules movement. The aim of this study was to test the effect of natural commensal-origin DNA on the TLR9 signaling cascade and the barrier integrity of polarized intestinal epithelial cells (IECs). Methods: Polarized HT-29 and T84 cells were treated with TNF-, in the presence or absence of DNA from Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum. TLR9 and interleukin-8 (IL-8) mRNA expression was assessed by semiquantitative and TaqMan real-time reverse-transcription polymerase chain reaction. Expression of TLR9 protein, degradation of inhibitor of kappa B alpha (I,B,), and p38 mitogen-activated protein kinase (p38 MAP) phosphorylation were assessed by Western blotting. To further reveal the role of TLR9 signaling, the TLR9 gene was silenced by siRNA. IL-8 secretion was measured by an enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-,B) activity was assessed by the electrophoretic mobility shift assay (EMSA) and NF-,B-dependent luciferase reporter gene assays. As an indicator of tight junction formation and monolayer integrity of epithelial cell monolayers, transepithelial electrical resistance (TER) was repetitively monitored. Transmonolayer movement of natural commensal-origin DNA across monolayers was monitored using qRT-PCR and nested PCR based on bacterial 16S rRNA genes. Results: In response to apically applied natural commensal-origin DNA, polarized HT-29 and T84 cells enhanced expression of TLR9 in a specific manner, which was subsequently associated with attenuation of TNF-,-induced NF-,B activation and NF-,B-mediated IL-8 expression. TLR9 silencing abolished this inhibitory effect. Apically applied LGG DNA attenuated TNF-,-enhanced NF-,B activity by reducing I,B, degradation and p38 phosphorylation. LGG DNA did not decrease the TER but rather diminished the TNF-,-induced TER reduction. Translocation of natural commensal-origin DNA into basolateral compartments did not occur under tested conditions. Conclusions: Our study indicates that TLR9 signaling mediates, at least in part, the anti-inflammatory effects of natural commensal-origin DNA on the gut because TLR9 silencing abolished the inhibitory effect of natural commensal-origin DNA on TNF-,-induced IL-8 secretion in polarized IECs. The nature of the TLR9 agonist, the polarity of cells, and the tight junction integrity of IECs has to be taken into account in order to predict the outcome of TLR9 signaling. (Inflamm Bowel Dis 2010) [source]


Glucocorticoid-inducible gene expression vectors for use in Drosophila melanogaster Schneider 2 cells

INSECT MOLECULAR BIOLOGY, Issue 2 2004
J. Poels
Abstract Inducible, vector-based, expression systems that allow fine control of transgene expression are gaining more and more use in fundamental research as well as in therapeutic applications. In an effort to develop a tightly regulated heterologous expression system for Drosophila Schneider 2 cells, three different inducible reporter constructs were compared. These comprised six copies of the glucocorticoid response element fused to one of three distinct types of Drosophila gene promoters: (1) a TATA-box containing, (2) a TATA-less and (3) a bidirectional core sequence. These were fused to a luciferase reporter gene. The promoter constructs displayed different basal as well as agonist-induced activities. The implications of the observations made are discussed in the context of promoter properties and of induction of genes that may be studied in Drosophila. [source]


Sequestosome 1 Mutations in Paget's Disease of Bone in Australia: Prevalence, Genotype/Phenotype Correlation, and a Novel Non-UBA Domain Mutation (P364S) Associated With Increased NF-,B Signaling Without Loss of Ubiquitin Binding,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2009
Sarah L Rea
Abstract Previously reported Sequestosome 1(SQSTM1)/p62 gene mutations associated with Paget's disease of bone (PDB) cluster in, or cause deletion of, the ubiquitin-associated (UBA) domain. The aims of this study were to examine the prevalence of SQSTM1 mutations in Australian patients, genotype/phenotype correlations and the functional consequences of a novel point mutation (P364S) located upstream of the UBA. Mutation screening of the SQSTM1 gene was conducted on 49 kindreds with PDB. In addition, 194 subjects with apparently sporadic PDB were screened for the common P392L mutation by restriction enzyme digestion. HEK293 cells stably expressing RANK were co-transfected with expression plasmids for SQSTM1 (wildtype or mutant) or empty vector and a NF-,B luciferase reporter gene. GST-SQSTM1 (wildtype and mutant) proteins were used in pull-down assays to compare monoubiquitin-binding ability. We identified SQSTM1 mutations in 12 of 49 families screened (24.5%), comprising 9 families with the P392L mutation and 1 family each with the following mutations: K378X, 390X, and a novel P364S mutation in exon 7, upstream of the UBA. The P392L mutation was found in 9 of 194 (4.6%) patients with sporadic disease. Subjects with SQSTM1 mutations had more extensive disease, but not earlier onset, compared with subjects without mutations. In functional studies, the P364S mutation increased NF-,B activation compared with wildtype SQSTM1 but did not reduce ubiquitin binding. This suggests that increased NF-,B signaling, but not the impairment of ubiquitin binding, may be essential in the pathogenesis of PDB associated with SQSTM1 mutations. [source]


Craniosynostosis-Associated Gene Nell-1 Is Regulated by Runx2,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2007
Thien Truong
Abstract We studied the transcriptional regulation of NELL-1, a craniosynostosis-related gene. We identitifed three OSE2 elements in the NELL-1 promoter that are directly bound and transactivated by Runx2. Forced expression of Runx2 induces NELL-1 expression in rat calvarial cells. Introduction: We previously reported the upregulation of NELL-1 in human craniosynostosis and the overexpression of Nell-1 in transgenic animals that induced premature suture closure associated with increased osteoblast differentiation. To study the transcriptional regulation of NELL-1, we analyzed the 5, flanking region of the human NELL-1 gene. We identified three osteoblast specific binding elements 2 (OSE2) sites (A, B, and C) within 2.2 kb upstream of the transcription start site and further studied the functionality of these sites. Materials and Methods: An area of 2.2 kb and a truncated 325 bp, which lacked the three OSE sites, were cloned into a luciferase reporter gene, and co-transfected with Runx2 expression plasmid. The three OSE2 sites were individually mutated and co-transfected with Runx2 expression plasmid into Saos2 cells. Gel shifts and supershifts with Runx2 antibodies were used to determine specific binding to OSE2 sites. CHIP assays were used to study in vivo binding of Runx2 to the Nell-1 promoter. Runx2 expression plasmid was transfected into wildtype and Runx2,/, calvarial cells. Nell-1, osteocalcin, and Runx2 expression levels were measured using RT-PCR. Results: Addition of Runx2 dose-dependently increased the luciferase activity in the human NELL-1 promoter-luciferase p2213. The p325 truncated NELL-1 construct showed significantly lower basal level of activity. Nuclear extract from Saos2 cells formed complexes with site A, B, and C probes and were supershifted with Runx2 antibody. Mutation of sites A, B, and C significantly decreased basal promoter activity. Furthermore, mutation of sites B and C had a blunted response to Runx2, whereas mutation of site A had a lesser effect. Runx2 bound to NELL-1 promoter in vivo. Transfection of Runx2 in rat osteoblasts upregulated Nell-1 and Ocn expression, and in Runx2 null calvarial cells, both Nell-1 and Ocn expression were rescued. Conclusions: Runx2 directly binds to the OSE2 elements and transactivates the human NELL-1 promoter. These results suggest that Nell-1 is likely a downstream target of Runx2. These findings may also extend our understanding of the molecular mechanisms governing the pathogenesis of craniosynostosis. [source]


Hepatitis B virus X protein upregulates expression of calpain small subunit 1 via nuclear facter-,B/p65 in hepatoma cells

JOURNAL OF MEDICAL VIROLOGY, Issue 6 2010
Feng Zhang
Abstract Hepatitis B virus (HBV) infection is closely correlated with the development of hepatocellular carcinoma (HCC), in which hepatitis B virus X protein (HBx) plays crucial roles. HBx is believed to be a multifunctional oncoprotein. It has been reported that the calpain small subunit 1 (Capn4) is upregulated in the HCC tissues and involved in the metastasis of HCC. Therefore, we suppose that HBx may promote hepatoma cell migration through Capn4. In the present study, we investigated the effect of HBx on regulating Capn4 expression in human HCC cells. Our data showed that HBx could increase promoter activity of Capn4 and upregulate the expression of Capn4 at the levels of mRNA and protein in human hepatoma HepG2 (or H7402) cells using luciferase reporter gene assay, real-time quantitative RT-PCR assay and Western blot analysis. While, the RNA interference targeting HBx mRNA was able to abolish the upregulation. Interestingly, we found that the inhibition of nuclear factor-,B (NF-,B) mediated by siRNA targeting NF-,B/p65 mRNA or PDTC (an inhibitor of NF-,B) could attenuate the upregulation of Capn4. While, HBx failed to increase the promoter activity of Capn4 in hepatoma cells when the putative NF-,B binding site of the Capn4 promoter was mutant, suggesting that NF-,B is involved in the activation of Capn4 mediated by HBx. In function, wound healing assay showed that HBx could significantly enhance the migration ability of HepG2 cells through upregulating Capn4. Thus, we conclude that HBx upregulate Capn4 through NF-,B/p65 to promote migration of hepatoma cells. J. Med. Virol. 82:920,928, 2010. © 2010 Wiley-Liss, Inc. [source]


Activation of NF-KB signalling and TNF,-expression in THP-1 macrophages by TiAlV- and polyethylene-wear particles

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2005
Bernd Baumann
Abstract Wear particles are believed to induce periprosthetic inflammation which contributes to periprosthetic osteolysis. TNF, plays a pivotal role in the pathogenesis of this process. The molecular mechanisms leading to the development of periprosthetic inflammation with upregulated TNF, expression in monocytic cells in response to different wear particles have yet to be defined. In this study we evaluated the effects of polyethylene- and TiAlV-particles on activation of NF-kB signalling pathways and TNF, biosynthesis and release in monocytic cells with respect to periprosthetic osteoclastogenesis. THP-1 monocytic cells were differentiated to macrophage-like cells and exposed to LPS-detoxified polyethylene and prosthesis-derived TiAlV-particles. TNF, release was analyzed in culture supernatant by ELISA. NF-kB activation was examined by electrophoretic mobility shift assay (EMSA), and NF-kB target promoter activities including transactivation of the TNF, promoter were determined by luciferase reporter gene assays. Differentiated THP-1 macrophages were exposed to increasing numbers of particles for 0, 60, 180 and 360 min. Both, polyethylene- and TiAlV-particles induced a significant activation of both NF-kB and TNF, promoters at 180 min. A significant TNF, release was detected after 360 min exposure to polyethylene- and TiAlV-particles in a dose dependent manner. In comparison, LPS induced a much greater activation of NF-kB and TNF, promoters, and TNF, secretion into the supernatant was strongly induced. These results provide evidence that induction of the NF-kB signal transduction pathway in macrophages plays a major role in initiating and mediating the inflammatory response leading to periprosthetic osteolysis. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Identification of a 251-bp Fragment of the PAI-1 Gene Promoter That Mediates the Ethanol-Induced Suppression of PAI-1 Expression

ALCOHOLISM, Issue 5 2001
Hernan E. Grenett
Background: Moderate alcohol consumption reduces the risk for coronary heart disease. This cardioprotection may be due to ethanol enhancement of fibrinolysis. Fibrinolysis involves the interaction of plasminogen activators (PAs) and the plasminogen activator inhibitor type-1 (PAI-1). Factor(s) that decrease endothelial cell (EC) PAI-1 expression increase fibrinolysis and may decrease the risk for cardiovascular disease. Methods: Five promoter deletion fragments were generated from a 1.1-kb PAI-1 promoter fragment and ligated to a luciferase reporter gene. Cultured human umbilical vein endothelial cells (HUVECs) were transiently transfected with these PAI-1 deletion constructs. A 251-base pair (bp) fragment of the PAI-1 promoter, positions ,800 to ,549, was cloned upstream of a heterologous promoter/enhancer. ECs luciferase activity was measured in the absence/presence of 20 mM ethanol. Electrophoresis mobility shift assays were performed with nuclear extracts from untreated and ethanol-treated ECs using this 251-bp fragment. Results: Deletion analysis showed a region between position ,800 and ,549 mediated ethanol repression of luciferase activity. This 251-bp promoter fragment also repressed the activity of a heterologous promoter/enhancer in the presence of ethanol. Using the labeled 251-bp fragment, nuclear extracts from ethanol-treated ECs contained two inducible bands and one enhanced band. Non-ethanol treated nuclear extracts also contained a band that was not observed in ethanol-treated samples. Competition using 100-fold molar excess of unlabeled probe abolished these four bands. Conclusions: Repression of PAI-I gene transcription in cultured HUVECs exposed to ethanol may involve the interaction of several transcription factors with binding sites localized between positions ,800 and ,549 of the PAI-1 gene promoter. [source]


Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2003
H. Ceelie
Summary.,Background:,Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. Objectives:,The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. Methods:,We constructed a set of prothrombin promoter 5, deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. Results:,We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. Conclusions:,The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression. [source]


A convenient and sensitive allergy test: IgE crosslinking-induced luciferase expression in cultured mast cells

ALLERGY, Issue 10 2010
R. Nakamura
To cite this article: Nakamura R, Uchida Y, Higuchi M, Nakamura R, Tsuge I, Urisu A, Teshima R. A convenient and sensitive allergy test: IgE crosslinking,induced luciferase expression in cultured mast cells. Allergy 2010; 65: 1266,1273. Abstract Background:, For the detection of allergen-specific IgE in sera, solid-phase IgE-binding assays like the CAP test are commonly used. Although such immunochemical methods are very sensitive, they frequently produce false positives. Degranulation of the human IgE receptor (Fc,RI)-transfected rat mast cell (RBL) lines seems to be a possible indicator for human IgE, but spontaneous mediator release from these cells in the presence of human sera is not negligible. Methods:, The nuclear factor of activated T-cells (NFAT)-responsive luciferase reporter gene was stably transfected into human Fc,RI-expressing RBL-SX38 cells. One established clone (RS-ATL8) was sensitized with 1 : 100 dilution of sera from patients with egg white allergy and then stimulated with purified or a crude extract of egg white allergen. Results:, Sensitization with 15 pg/ml IgE was sufficient to detect IgE crosslinking,induced luciferase expression (EXiLE) by anti-IgE stimulation. Allergen-specific EXiLE was elicited by as little as 1 fg/ml of egg white protein without cytotoxicity. There was a good correlation between results with EXiLE and oral food challenge tests on patients with egg allergy (P = 0.001687, Fisher's exact test). The measured values of EXiLE and the CAP test also correlated well (R = 0.9127, Spearman's test). Conclusion:, The EXiLE test using RS-ATL8 cells is a promising in vitro IgE test to evaluate the biological activity of the binding between IgE and allergens. [source]


Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line

MOLECULAR CARCINOGENESIS, Issue 4 2006
Chien-Huang Liao
Abstract Telomerase expression is the hallmark of tumor cells, and activation of this ribonucleoprotein complex may be a rate-limiting or critical step in cellular immortalization and oncogenesis. Fungal immunomodulatory protein, FIP-gts, has been isolated from Ganoderma tsugae. In the present study, we expressed and purified the recombinant fungal immunomodulatory protein reFIP-gts in E. coli. We found that reFIP-gts significantly and selectively inhibits the growth of A549 cancer cells while not affecting the growth of normal MRC-5 fibroblasts. The reFIP-gts suppression of telomerase activity is concentration-dependent, due to the downregulation of the telomerase catalytic subunit (hTERT). It also happens at the mRNA level. These results were confirmed by transient transfections of A549 cells with pGL3-Basic plasmid constructs containing the functional hTERT promoter and its E-box-deleted sequences cloned upstream of a luciferase reporter gene. With electrophoretic mobility shift assays and Western blotting, we demonstrated that in response to reFIP-gts, binding of c- myc transcriptional factor to the E-box sequence on the hTERT promoter is inhibited. These results show that reFIP-gts suppresses telomerase activity and inhibits transcriptional regulation of hTERT via a c- myc -responsive element-dependent mechanism. Our findings provide new insight into both the anticancer function of reFIP-gts and the regulation of hTERT/telomerase expression, which may be valuable in the development of a promising chemopreventive agent. © 2006 Wiley-Liss, Inc. [source]


Regional hydrodynamic gene delivery to the rat liver with physiological volumes of DNA solution

THE JOURNAL OF GENE MEDICINE, Issue 6 2004
Xiaohong Zhang
Abstract Background The major barrier to the clinical application of hydrodynamic gene delivery to the liver is the large volume of fluid required using standard protocols. Regional hydrodynamic gene delivery via branches of the portal vein has not previously been reported, and we have evaluated this approach in a rat model. Methods The pGL3 plasmid with the luciferase reporter gene was used at 50 µg/ml in isotonic solutions, and was administered with a syringe pump for precise control of the hydrodynamic conditions evaluated. Gene expression was individually measured in six anatomically distinct liver lobes. The effect of systemic chloroquine to promote endocytic escape and a (Lys)16 -containing peptide to condense the DNA into ,100-nm nanoparticles was also evaluated. Results Hydrodynamic conditions for excellent gene delivery were obtained by using 3-ml volumes (,12 ml/kg) of isotonic DNA solution delivered at 24 ml/min to the right lateral lobe (,20% of the liver mass). Under these conditions, >95% of gene delivery usually occurred in the targeted right lateral lobe. Outflow obstruction was essential for gene delivery, both at optimal and at very low levels of hydrodynamic gene delivery. The use of systemic chloroquine to promote endocytic escape did not augment hydrodynamic gene delivery, while condensation of DNA in non-ionic isotonic solutions (5% dextrose) to nanoparticles of ,100 nm completely abolished gene delivery. Conclusions Regional hydrodynamic gene delivery via a branch of the portal vein offers a physiological model of liver gene therapy, for experimental and clinical application. Copyright © 2004 John Wiley & Sons, Ltd. [source]


TNF-, Drives Matrix Metalloproteinase-9 in Squamous Oral Carcinogenesis,

THE LARYNGOSCOPE, Issue 8 2008
Laurie Hohberger MD
Abstract Objectives/Hypothesis: It is well known that invasion is a seminal event in the progression of oral and other head and neck carcinoma sites. We have previously demonstrated tumor necrosis factor (TNF)-, and its dependent cytokines are upregulated in saliva during oral carcinogenesis. TNF-dependent events stimulate nuclear factor (NF)-,B and many NF-,B-dependent genes are associated with cancer progression. Materials and Methods: In the present study, we examined NF-,B stimulation of matrix metalloproteinase (MMP)-9 in a precancerous keratinocyte cell line that models leukoplakia (Rhek cells). We stimulated Rhek cells with both TNF-, and phorbol myristate acetate, known stimulants of NF-,B. We then assayed MMP-9 transcription and secretion by luciferase reporter genes, quantitative real-time polymerase chain reaction, and fluorometric enzyme-linked immunosorbent serologic assay. Results: We discovered that the MMP-9 promoter was significantly stimulated by phorbol myristate acetate and TNF-, on luciferase reporter gene assays. Further, we uncovered that functional MMP-9 promoter activation was accompanied by significant increases in MMP-9 gene expression, as judged by quantitative real-time polymerase chain reaction. Functional activation of the MMP-9 protein was stimulated by TNF-, and PMA on a fluorescent enzyme-linked immunosorbent serologic assay. Finally, we searched our salivary proteomic database for increases in MMP-9 and discovered it was the third most significant protein in salivas of oral cavity cancer patients over normal controls. Conclusions: We conclude the milieu cytokine, TNF-,, has the capacity to provide stimulation of events related to early invasion of oral cavity cancer, as judged by its ability to stimulate MMP-9. [source]


Characterization of the RSL1-dependent conditional expression system in LNCaP prostate cancer cells and development of a single vector format

THE PROSTATE, Issue 8 2007
Julie Lessard
Abstract Background Conditional expression systems are useful tools for the study of gene function but the use of these systems in prostate cancer cells is limited by the undesired biological effects of the inducing ligands. The RheoSwitch system employs RheoSwitch Ligand 1 (RSL1), a non-steroidal analog of the insect hormone ecdysone, to activate a modified nuclear receptor heterodimer that controls target gene expression via GAL4 response elements. This system has not been tested in prostate cancer cells. Methods We established LNCaP human prostate cancer cell lines that constitutively express RheoSwitch transcription factors to quantify RSL1-dependent expression and assess the effects of RSL1 on cell proliferation and endogenous gene expression. Potential RSL1-responsive genes were identified using Affymetrix microarrays and validated by Northern blot hybridization. A single-vector format was developed to establish cell lines that conditionally produce a recombinant protein. Results Stable cell lines displayed tight and potent (over several orders of magnitude) RSL1-dependent regulation of a transiently transfected luciferase reporter gene. RSL1 did not affect basal or androgen-stimulated cell proliferation and exerted minimal effects on the expression of endogenous genes. Cell lines established using the single-vector system also displayed strictly RSL1-dependent production of the recombinant protein encoded by the stably integrated RSL1-responsive expression cassette. Conclusions The RheoSwitch system is well suited for conditional gene expression in prostate cancer cells. The single-vector format should facilitate the production of stable cell lines. This system should be useful for the study of proteins involved in prostate cancer in both cell and animal models of the disease. Prostate 67: 808,819, 2007. © 2007 Wiley-Liss, Inc. [source]


In vivo imaging of retinoic acid receptor ,2 transcriptional activation by the histone deacetylase inhibitor MS-275 in retinoid-resistant prostate cancer cells

THE PROSTATE, Issue 1 2005
David Z. Qian
Abstract BACKGROUND In retinoid resistant epithelial tumors, the lack of retinoic acid receptor ,2 (RAR,2) expression due to epigenetic silencing impairs the activation of retinoid target genes including RAR,2, and has been associated with the development of cancer. In this study we developed a strategy to monitor the re-activation of RAR,2 by chromatin remodeling agents combined with retinoids in real time, and to correlate the RAR,2 re-activation with anti-tumor activity. METHODS We selected the RAR,2-negative retinoid resistant human prostate carcinoma cell line PC3 and stably transfected it with a luciferase expression vector under the control of a functional segment of RAR,2 promoter (pGL2-RAR,2-PC3). Then, we used the bioluminescence technology to monitor the reporter gene expression in real time both in vitro and in vivo following combination treatment with the histone deacetylase inhibitor MS-275 and 13- cis retinoic acid (CRA). Based on the effective dose for the RAR,2 re-activation, we tested the anti-tumor activity of this drug combination. RESULTS Following combination treatment with MS-275 and CRA, we observed endogenous RAR,2 re-expression, acetylation at the RAR,2 promoter level, and synergistic activation of the luciferase reporter gene by real time imaging both in vitro and in vivo. Combination treatment with MS-275 and CRA restored retinoid sensitivity in human prostate carcinoma cell lines, and had a greater inhibitory effect on tumor cell growth than single agents in vitro and in vivo. CONCLUSIONS This study provides evidence that HDAC inhibitors restore retinoid sensitivity in prostate cancer cells, and in vivo real time imaging of RAR,2 activation may represent a useful tool to study the pharmacodynamics of combination therapy with HDAC inhibitors and retinoids. © 2005 Wiley-Liss, Inc. [source]


A functional RANKL polymorphism associated with younger age at onset of rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 10 2010
Wenfeng Tan
Objective We previously observed the association of the co-occurrence of the HLA,DRB1 shared epitope (SE) and RANKL single-nucleotide polymorphisms (SNPs) with younger age at the onset of rheumatoid arthritis (RA) in 182 rheumatoid factor (RF),positive European American patients with early-onset RA. The aim of this study was to fine-map the 48-kb RANKL region in the extended cohort of 210 European American RF-positive patients with early RA, to seek replication of RA-associated SNPs in additional RA cohorts of 501 European Americans and 298 African Americans, and to explore the functional consequences of RA-associated SNPs. Methods SNP genotyping was conducted using pyrosequencing or TaqMan polymerase chain reaction (PCR) assays. Associations of rs7984870 with RANKL expression in plasma, peripheral blood mononuclear cells, and isolated T cells were quantified using enzyme-linked immunosorbent assay and reverse transcription,PCR. Site-directed mutagenesis of rs7984870 within the 2-kb RANKL promoter was performed to drive the luciferase reporter gene in osteoblast and stromal cell lines. Interaction of DNA and protein was determined by electrophoretic mobility shift assay. Results A single promoter SNP, rs7984870, was consistently significantly associated with earlier age at the onset of RA in 3 independent seropositive (RF or anti,cyclic citrullinated peptide antibody) RA cohorts but not in seronegative RA patients. The C risk allele of rs7984870 conferred 2-fold higher plasma RANKL levels in RF-positive patients with RA, significantly elevated RANKL messenger RNA expression in activated normal T cells, and increased promoter activity after stimulation in vitro via differential binding to the transcription factor SOX5. Conclusion The RANKL promoter allele that increased transcription levels upon stimulation might promote interaction between activated T cells and dendritic cells, predisposing to a younger age at the onset of RA in seropositive European American and African American patients. [source]


MicroRNA-29, a key regulator of collagen expression in systemic sclerosis

ARTHRITIS & RHEUMATISM, Issue 6 2010
Britta Maurer
Objective To investigate the role of microRNA (miRNA) as posttranscriptional regulators of profibrotic genes in systemic sclerosis (SSc). Methods MicroRNA, which target collagens, were identified by in silico analysis. Expression of miRNA-29 (miR-29) was determined by TaqMan real-time polymerase chain reaction analysis of skin biopsy and fibroblast samples from SSc patients and healthy controls as well as in the mouse model of bleomycin-induced skin fibrosis. Cells were transfected with precursor miRNA (pre-miRNA)/anti-miRNA of miR-29 using Lipofectamine. Collagen gene expression was also studied in luciferase reporter gene assays. For stimulation, recombinant transforming growth factor , (TGF,), platelet-derived growth factor B (PDGF-B), or interleukin-4 (IL-4) was used. The effects of inhibiting PDGF-B and TGF, signaling on the levels of miR-29 were studied in vitro and in the bleomycin model. Results We found that miR-29a was strongly down-regulated in SSc fibroblasts and skin sections as compared with the healthy controls. Overexpression in SSc fibroblasts significantly decreased, and accordingly, knockdown in normal fibroblasts increased, the levels of messenger RNA and protein for type I and type III collagen. In the reporter gene assay, cotransfection with pre-miR-29a significantly decreased the relative luciferase activity, which suggests a direct regulation of collagen by miR-29a. TGF,, PDGF-B, or IL-4 reduced the levels of miR-29a in normal fibroblasts to those seen in SSc fibroblasts. Similar to human SSc, the expression of miR-29a was reduced in the bleomycin model of skin fibrosis. Inhibition of PDGF-B and TGF, pathways by treatment with imatinib restored the levels of miR-29a in vitro and in the bleomycin model in vivo. Conclusion These data add the posttranscriptional regulation of collagens by miR-29a as a novel aspect to the fibrogenesis of SSc and suggest miR-29a as a potential therapeutic target. [source]


Inhibition of cartilage degradation: A combined tissue engineering and gene therapy approach

ARTHRITIS & RHEUMATISM, Issue 3 2003
Wael Kafienah
Objective To determine if tissue-engineered cartilage can be protected from cytokine-induced degradation using a gene therapy approach. Methods Chemical and pantropic retroviral gene transfer methodologies were compared for their ability to introduce a luciferase reporter gene into adult bovine cartilage chondrocytes grown in monolayer. Pantropic retrovirus was then used to transduce these cells with human tissue inhibitor of metalloproteinases 1 (TIMP-1), and the stability of expression in monolayer or pellet culture was monitored for 6 weeks. Untransduced and TIMP-1,transduced cells were also used to tissue engineer 3-dimensional cartilage constructs that were then challenged with interleukin-1 (IL-1) for 4 weeks. Conditioned media and residual cartilage were collected for analysis of matrix components, including type II collagen and proteoglycans, and for TIMP-1 production and matrix metalloproteinase (MMP) activity. Results Chemical transfection of adult bovine chondrocytes gave rise to short-lived reporter expression that was virtually undetectable after 4 weeks of culture. In contrast, pantropic retroviral transduction gave rise to stable expression that persisted at a high level for at least 6 weeks. Pantropic transduction of the cells with TIMP-1 gave rise to similar long-term expression, both in monolayer and pellet cultures. TIMP-1,transduced tissue-engineered cartilage also retained TIMP-1 expression for an additional 4 weeks of culture in the presence of IL-1. Compared with control samples, TIMP-1,transgenic cartilage resisted the catabolic effects of IL-1, with MMP activity reduced to basal levels and a decreased loss of type II collagen. Conclusion Pantropic retroviral transduction permits long-term expression of potentially therapeutic transgenes in adult tissue-engineered cartilage. While TIMP-1 transduction could be used to prevent collagen breakdown, alternative transgenes may be necessary to protect cartilage proteoglycans. [source]


Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins

BIOELECTROMAGNETICS, Issue 3 2007
M. Zhadobov
Abstract This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50,75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1,33 h) and two different power densities (5.4 µW/cm2 or 0.54 mW/cm2). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. Bioelectromagnetics 28:188,196, 2007. © 2006 Wiley-Liss, Inc. [source]


Quantitative real-time analysis of HIV-1 gene expression dynamics in single living primary cells

BIOTECHNOLOGY JOURNAL, Issue 6 2006
Asier Sáez-Cirión
Abstract Studies on the regulation of viral transcription upon infection of the target cells have provided important information on the viral and host factors that influence pathogenesis. However, these studies have been limited so far to steady-state analysis of gene expression. Here we report an image based photon-counting method that allows real-time quantitative imaging of viral gene expression in infected single cells. Employing an HIV-1 vector bearing the firefly luciferase reporter gene, we exploited a single cell photon imaging methodology (a customized and highly sensitive imaging microscope) to measure viral gene expression following integration into a host genome in situ. Our approach reveals real-time dynamics of viral gene expression in living HIV natural target cells (primary human CD4 T cells and macrophages), and promises itself as a powerful tool for quantitative studies on a wide variety of virus-host cell interactions. [source]