Luciferase Reporter Construct (luciferase + reporter_construct)

Distribution by Scientific Domains


Selected Abstracts


Novel missense mutations in the FOXC2 gene alter transcriptional activity,

HUMAN MUTATION, Issue 12 2009
M.A.M. van Steensel
Abstract Mutations in the FOXC2 gene that codes for a forkhead transcription factor are associated with primary lymphedema that usually develops around puberty. Associated abnormalities include distichiasis and, very frequently, superficial and deep venous insufficiency. Most mutations reported so far either truncate the protein or are missense mutations in the forkhead domain causing a loss of function. The haplo-insufficient state is associated with lymphatic hyperplasia in mice as well as in humans. We analyzed the FOXC2 gene in 288 patients with primary lymphedema and found 11 pathogenic mutations, of which 9 are novel. Of those, 5 were novel missense mutations of which 4 were located outside of the forkhead domain. To examine their pathogenic potential we performed a transactivation assay using a luciferase reporter construct driven by FOXC1 response elements. We found that the mutations outside the forkhead domain cause a gain of function as measured by luciferase activity. Patient characteristics conform to previous reports with the exception of distichiasis, which was found in only 2 patients out of 11. FOXC2 mutations causing lymphedema-distichiasis syndrome reported thus far result in haplo-insufficiency and lead to lymphatic hyperplasia. Our results suggest that gain-of-function mutations may also cause lymphedema. One would expect that in this case, lymphatic hypoplasia would be the underlying abnormality. Patients with activating mutations might present with Meige disease. © 2009 Wiley-Liss, Inc. [source]


Autocrine TGF, signaling mediates vitamin D3 analog-induced growth inhibition in breast cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
Limin Yang
In this study, we address whether TGF, signaling mediates vitamin D3 analog-induced growth inhibition in nonmalignant and malignant breast cells. Normal mammary epithelial cells (184), immortalized nonmalignant mammary epithelial cells (184A1 and MCF10A), and breast cancer cells (early passage MCF7: MCF7E) were sensitive to the inhibitory effects of vitamin D3 analogs (EB1089 and MC1288) while late passage MCF7 breast cancer (MCF7L) cells were relatively resistant. A similar pattern of sensitivity to TGF, was observed with these cells. Thus, the sensitivity to the vitamin D3 analogs correlated with the sensitivity to TGF,. MCF7L TGF,RII-transfected cells, which have autocrine TGF, activity, were more sensitive to EB1089 than MCF7L cells. TGF, neutralizing antibody was found to block the inhibitory effects of these analogs. These results are consistent with the idea that autocrine TGF, signaling mediates the anti-proliferative effects of the vitamin D3 analogs in these cells. The expression of TGF, isoforms and/or TGF, receptors was induced by the analogs in the vitamin D3 and TGF, sensitive cells. Vitamin D3 analogs did not induce TGF, or TGF, receptor expression in the resistant MCF7L cells. Therefore, EB1089 induces autocrine TGF, activity through increasing expression of TGF, isoforms and/or TGF, receptors. In addition, EB1089 induced nuclear VDR protein levels in the sensitive 184A1 cells but not in the resistant MCF7L cells. 184A1 cells were more sensitive to EB1089-induced VDR-dependent transactivation than MCF7L cells as measured by a luciferase reporter construct containing the VDRE, indicating a defect of VDR signaling in MCF7L cells. Smad3, a TGF, signaling mediator, coactivated VDR-dependent transactivation in 184A1 cells but not in MCF7L cells. These results indicate that Smad3 coactivates VDR to further enhance TGF, signaling and vitamin D3 signaling in the sensitive 184A1 cells. The results also indicate that Smad3 is not of itself sufficient to coactivate VDR in TGF,/vitamin D3 resistant MCF7L cells and other factors are required. We found that the PI 3-kinase pathway inhibitor LY29004 inhibited the synergy of TGF, and EB1089 on VDR-dependent transactivation activity. This indicates that the crosstalk between TGF, and vitamin D signaling is also PI 3-kinase pathway dependent. © 2001 Wiley-Liss, Inc. [source]


Transcriptional regulation of connexin 43 expression by retinoids and carotenoids: Similarities and differences

MOLECULAR CARCINOGENESIS, Issue 2 2005
Alex L. Vine
Abstract Gap junctions, connexons, are formed by assembly of trans-membrane connexin proteins and have multiple functions including the coordination of cell responses. Most human tumors are deficient in gap junctional communication (GJC) and restoration of GJC by forced expression of connexins reduces indices of neoplasia. Expression of connexin 43 (Cx43), the most widely-expressed connexin family member, is upregulated by cancer-preventive retinoids and carotenoids in normal and preneoplastic cells; an action considered of mechanistic significance. However, the molecular mechanism for upregulated expression is poorly understood. The retinoic acid receptor antagonist Ro 41-5253 was capable of suppressing retinoid-induction Cx43 luciferase reporter construct in F9 cells, but did not suppress reporter activity induced by the non-pro-vitamin A carotenoids astaxanthin or lycopene, indicating that retinoids have separate mechanisms of gene activation than non-pro-vitamin A carotenoids. Neither class of compound required protein synthesis for induction of Cx43 mRNA, nor was the 5.0 h half-life of Cx43 mRNA altered, indicating direct transcriptional activation. The responsive region was found within ,158 bp and +209 bp of the transcription start site; this contains a Sp1/Sp3 GC-box to which Sp1 and Sp3 were bound, as revealed by electrophoretic mobility shift assays (EMSA), but no retinoic acid response element (RARE). Site directed mutagenesis of this GC-box resulted in increased basal levels of transcription and loss of responsiveness to a synthetic retinoid. In this construct astaxanthin and lycopene produced marginally, but not significantly higher, reporter activity than the control. © 2005 Wiley-Liss, Inc. [source]


Interleukin-1, and tumor necrosis factor , inhibit chondrogenesis by human mesenchymal stem cells through NF-,B,dependent pathways,

ARTHRITIS & RHEUMATISM, Issue 3 2009
N. Wehling
Objective The differentiation of mesenchymal stem cells (MSCs) into chondrocytes provides an attractive basis for the repair and regeneration of articular cartilage. Under clinical conditions, chondrogenesis will often need to occur in the presence of mediators of inflammation produced in response to injury or disease. The purpose of this study was to examine the effects of 2 important inflammatory cytokines, interleukin-1, (IL-1,) and tumor necrosis factor , (TNF,), on the chondrogenic behavior of human MSCs. Methods Aggregate cultures of MSCs recovered from the femoral intermedullary canal were used. Chondrogenesis was assessed by the expression of relevant transcripts by quantitative reverse transcription,polymerase chain reaction analysis and examination of aggregates by histologic and immunohistochemical analyses. The possible involvement of NF-,B in mediating the effects of IL-1, was examined by delivering a luciferase reporter construct and a dominant-negative inhibitor of NF-,B (suppressor-repressor form of I,B [srI,B]) with adenovirus vectors. Results Both IL-1, and TNF, inhibited chondrogenesis in a dose-dependent manner. This was associated with a marked activation of NF-,B. Delivery of srI,B abrogated the activation of NF-,B and rescued the chondrogenic response. Although expression of type X collagen followed this pattern, other markers of hypertrophic differentiation responded differently. Matrix metalloproteinase 13 was induced by IL-1, in a NF-,B,dependent manner. Alkaline phosphatase activity, in contrast, was inhibited by IL-1, regardless of srI,B delivery. Conclusion Cell-based repair of lesions in articular cartilage will be compromised in inflamed joints. Strategies for enabling repair under these conditions include the use of specific antagonists of individual pyrogens, such as IL-1, and TNF,, or the targeting of important intracellular mediators, such as NF-,B. [source]


Halofuginone inhibition of COL1A2 promoter activity via a c-Jun,dependent mechanism

ARTHRITIS & RHEUMATISM, Issue 10 2002
Tracy L. McGaha
Objective The naturally occurring compound halofuginone has been shown to antagonize collagen synthesis by fibroblasts both in vitro and in vivo. We previously demonstrated that this inhibitory property was related to the ability of halofuginone to disrupt transforming growth factor , signal transduction. The present study further analyzed the ability of halofuginone to affect transcription factors that can regulate type I collagen gene expression by examining its effect on c-Jun, the negative regulator of collagen gene transcription. Methods The phosphorylation state of c-Jun in the presence of halofuginone was examined via direct Western blotting, and the transcriptional activity of the activator protein 1 (AP-1) binding element via electrophoretic mobility shift assay and luciferase reporter assay. We determined whether the effect of halofuginone on collagen synthesis was dependent on the presence of c-Jun by ectopic expression of a wild-type or dominant-negative c-Jun construct in the presence of halofuginone and assaying ,2(I) collagen promoter strength via luciferase reporter assay. The effect of halofuginone on ,2(I) collagen message levels in fibroblasts when wild-type or dominant-negative c-Jun was overexpressed was determined. We also determined whether halofuginone had an effect on the phosphorylation state of c-Jun in the skin of TSK/+ mice via immunohistochemistry. Results Treatment of fibroblasts with 10,8M halofuginone enhanced basal and mitogen-mediated phosphorylation of c-Jun in culture. This elevated phosphorylation of c-Jun correlated with enhanced DNA binding and transcriptional activation of an AP-1 complex consisting of c-Jun and Fos but lacking the c-Jun antagonist JunB. Overexpression of c-Jun enhanced in a dose-dependent manner the ability of halofuginone to inhibit the activity of a luciferase reporter construct under control of the ,3200-bp to +54-bp COL1A2 promoter, whereas the expression of a dominant-negative c-Jun construct abolished this effect. Northern blotting showed that overexpression of c-Jun enhanced the ability of halofuginone to reduce collagen ,2(I) messenger RNA levels in fibroblasts, whereas expression of the dominant-negative c-Jun abolished this effect. Topical administration of a halofuginone-containing cream for 20 days to TSK mice, which spontaneously develop dermal fibrosis, greatly increased the phosphorylated form of c-Jun in the skin; this was followed by a decrease in skin thickness and type I collagen messenger RNA expression. Conclusion Our findings illustrate the powerful down-regulatory property of c-Jun toward type I collagen and establish that halofuginone exerts its effect on collagen synthesis in a c-Jun,dependent manner. [source]


Assessment of in vitro immunity to Mycobacterium tuberculosis in a human peripheral blood infection model using a luciferase reporter construct of M. tuberculosis H37Rv

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2006
R. Al-Attiyah
Summary Protective immune responses to tuberculosis in man are primarily cell-mediated and require the interaction of specific T cells, cytokines and activated macrophages. In the present study, Mycobacterium tuberculosis H37Rv labelled with luciferase reporter enzyme was used to analyse the anti-mycobacterial immunity in man using an in vitro whole blood infection model. Peripheral blood samples obtained from M. bovis bacille Calmette,Guérin (BCG)-vaccinated tuberculin-positive healthy volunteers (n = 23) were cultured with M. tuberculosis H37Rv reporter strain. The growth of bacteria in the whole blood cultures was monitored after 48 and 96 h of infection. The results showed that the growth of M. tuberculosis was significantly inhibited after 96 h (P < 0·029) of culture. Among the cytokines studied, interleukin (IL)-10 and IL-12 were not detected at all, whereas low levels of interferon (IFN)-, after 96 h (0·4 IU/ml) and tumour necrosis factor (TNF)-, after 48 (135 pg/ml) and 96 h (47 pg/ml) of culture were detected in the supernatants of whole blood infected with M. tuberculosis. The magnitude of bacterial growth correlated directly with the concentration of TNF-, detected after 48 h (r = 0·722) and 96 h (r = 0·747) of culture (P , 0·0001 and P , 0·0001, respectively). However, the addition of monoclonal antibodies specific to TNF-, and IFN-, to the blood cultures did not alter mycobacterial growth indicating the role of other mechanisms/factors in restricting the growth of M. tuberculosis in whole blood cultures. [source]


ORIGINAL ARTICLE: Haplotype-dependent Differential Activation of the Human IL-10 Gene Promoter in Macrophages and Trophoblasts: Implications for Placental IL-10 Deficiency and Pregnancy Complications

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2010
Surendra Sharma
Citation Sharma S, Stabila J, Pietras L, Singh AR, McGonnigal B, Ernerudh J, Matthiesen L, Padbury JF. Haplotype-dependent differential activation of the human IL-10 gene promoter in macrophages and trophoblasts: Implications for placental IL-10 deficiency and pregnancy complications. Am J Reprod Immunol 2010; 64: 179,187 Problem, Polymorphic changes in the IL-10 gene promoter have been identified that lead to altered IL-10 production. We hypothesized that because of these genotypic changes, the IL-10 promoter might be expressed in a cell type,specific manner and may respond differentially to inflammatory triggers. Method of study, We created reporter gene promoter constructs containing GCC, ACC, and ATA haplotypes using DNA from patients harboring polymorphic changes at ,1082 (G,A), ,819 (C,T), and ,592 (C,A) sites in the IL-10 promoter. These individual luciferase reporter constructs were transiently transfected into either primary term trophoblasts or THP1 monocytic cells. DNA-binding studies were performed to implicate the role of the Sp1 transcription factor in response to differential promoter activity. Results, Our results suggest that the GCC promoter construct was activated in trophoblast cells in response to lipopolysaccharide (LPS), as demonstrated by reporter gene expression, but not in monocytic cells. The ACC construct showed weaker activation in both cell types. Importantly, while the ATA promoter was constitutively activated in both cell types, its expression was selectively repressed in response to LPS, but only in trophoblasts. DNA-nuclear protein binding assays with nuclear extracts from LPS treated or untreated cells suggested a functional relevance for Sp1 binding differences at the ,592 position. Conclusions, These results demonstrate cell type,specific effects of the genotypic changes in the IL-10 gene promoter. These responses may be further modulated by bacterial infections or other inflammatory conditions to suppress IL-10 production in human trophoblasts. [source]


Gadd45, deficiency in rheumatoid arthritis: Enhanced synovitis through JNK signaling

ARTHRITIS & RHEUMATISM, Issue 11 2009
Camilla I. Svensson
Objective JNK-mediated cell signaling plays a critical role in matrix metalloproteinase (MMP) expression and joint destruction in rheumatoid arthritis (RA). Gadd45,, which is an NF-,B,regulated gene, was recently identified as an endogenous negative regulator of the JNK pathway, since it could block the upstream kinase MKK-7. This study was carried out to evaluate whether low Gadd45, expression in RA enhances JNK activation and overproduction of MMPs in RA, and whether Gadd45, deficiency increases arthritis severity in passive K/BxN murine arthritis. Methods Activation of the NF-,B and JNK pathways and Gadd45, expression were analyzed in human synovium and fibroblast-like synoviocytes (FLS) using quantitative polymerase chain reaction, immunoblotting, immunohistochemistry, electrophoretic mobility shift assay, and luciferase reporter constructs. Gadd45,,/, and wild-type mice were evaluated in the K/BxN serum transfer model of inflammatory arthritis, and clinical signs of arthritis, osteoclast formation, and bone erosion were assessed. Results Expression levels of the Gadd45, gene and protein were unexpectedly low in human RA synovium despite abundant NF-,B activity. Forced Gadd45, expression in human FLS attenuated tumor necrosis factor,induced signaling through the JNK pathway, reduced the activation of activator protein 1, and decreased the expression of MMP genes. Furthermore, Gadd45, deficiency exacerbated K/BxN serum,induced arthritis in mice, dramatically increased signaling through the JNK pathway, elevated MMP3 and MMP13 gene expression in the mouse joints, and increased the synovial inflammation and number of osteoclasts. Conclusion Deficient Gadd45, expression in RA can contribute to activation of JNK, exacerbate clinical arthritis, and augment joint destruction. This process can be mitigated by enhancing Gadd45, expression or by inhibiting the activity of JNK or its upstream regulator, MKK-7. [source]