Lowland Areas (lowland + area)

Distribution by Scientific Domains


Selected Abstracts


Michigan Basin Regional Ground Water Flow Discharge to Three Great Lakes

GROUND WATER, Issue 4 2002
John Robert Hoaglund III
Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 5% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only ,1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only ,2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas. [source]


Pliocene forest dynamics as a primary driver of African bird speciation

GLOBAL ECOLOGY, Issue 1 2010
Gary Voelker
ABSTRACT Aim, Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium-sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location, Africa. Methods, We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat-based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results, Robust estimates of phylogenetic relationships and clock-based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east,west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions, Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ,ancient' taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene. [source]


Spatial variability of snowmelt timing from AMSR-E and SSM/I passive microwave sensors, Pelly River, Yukon Territory, Canada

HYDROLOGICAL PROCESSES, Issue 12 2007
Joan M. Ramage
Abstract Spring snow melt run-off in high latitude and snow-dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub-arctic regions have sparse long-term ground observations and these snow-dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt-refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ,DAV onset' and ,melt onset') and duration for a complex sub-arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ,incipient melt', a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave-derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1,2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd. [source]


The impact of groundwater,surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany

HYDROLOGICAL PROCESSES, Issue 2 2007
Stefan Krause
Abstract The glacially formed northeastern German lowlands are characterized by extensive floodplains, often interrupted by relatively steep moraine hills. The hydrological cycle of this area is governed by the tight interaction of surface water dynamics and the corresponding directly connected shallow groundwater aquifer. Runoff generation processes, as well as the extent and spatial distribution of the interaction between surface water and groundwater, are controlled by floodplain topography and by surface water dynamics. A modelling approach based on extensive experimental analyses is presented that describes the specific water balance of lowland areas, including the interactions of groundwater and surface water, as well as reflecting the important role of time-variable shallow groundwater stages for runoff generation in floodplains. In the first part, experimental investigations of floodplain hydrological characteristics lead to a qualitative understanding of the water balance processes and to the development of a conceptual model of the water balance and groundwater dynamics of the study area. Thereby model requirements which allow for an adequate simulation of the floodplain hydrology, considering also interactions between groundwater and surface water have been characterized. Based on these analyses, the Integrated Modelling of Water Balance and Nutrient Dynamics (IWAN) approach has been developed. This consists of coupling the surface runoff generation and soil water routines of the deterministic, spatially distributed hydrological model WASIM-ETH-I with the three-dimensional finite-difference-based numerical groundwater model MODFLOW and Processing MODFLOW. The model was applied successfully to a mesoscale subcatchment of the Havel River in northeast Germany. It was calibrated for two small catchments (1·4 and 25 km2), where the importance of the interaction processes between groundwater and surface waters and the sensitivity of several controlling parameters could be quantified. Validation results are satisfying for different years for the entire 198 km2 catchment. The model approach was further successfully tested for specific events. The experimental area is a typical example of a floodplain-dominated landscape. It was demonstrated that the lateral flow processes and the interactions between groundwater and surface water have a major importance for the water balance and periodically superimposed on the vertical runoff generation. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Are the Northern Andes a species pump for Neotropical birds?

JOURNAL OF BIOGEOGRAPHY, Issue 2 2010
Phylogenetics, biogeography of a clade of Neotropical tanagers (Aves: Thraupini)
Abstract Aim, We used mitochondrial DNA sequence data to reconstruct the phylogeny of a large clade of tanagers (Aves: Thraupini). We used the phylogeny of this Neotropical bird group to identify areas of vicariance, reconstruct ancestral zoogeographical areas and elevational distributions, and to investigate the correspondence of geological events to speciation events. Location, The species investigated are found in 18 of the 22 zoogeographical regions of South America, Central America and the Caribbean islands; therefore, we were able to use the phylogeny to address the biogeographical history of the entire region. Methods, Molecular sequence data were gathered from two mitochondrial markers (cytochrome b and ND2) and analysed using Bayesian and maximum-likelihood approaches. Dispersal,vicariance analysis (DIVA) was used to reconstruct zoogeographical areas and elevational distributions. A Bayesian framework was also used to address changes in elevation during the evolutionary history of the group. Results, Our phylogeny was similar to previous tanager phylogenies constructed using fewer species; however, we identified three genera that are not monophyletic and uncovered high levels of sequence divergence within some species. DIVA identified early diverging nodes as having a Northern Andean distribution, and the most recent common ancestor of the species included in this study occurred at high elevations. Most speciation events occurred either within highland areas or within lowland areas, with few exchanges occurring between the highlands and lowlands. The Northern Andes has been a source for lineages in other regions, with more dispersals out of this area relative to dispersals into this area. Most of the dispersals out of the Northern Andes were dispersals into the Central Andes; however, a few key dispersal events were identified out of the Andes and into other zoogeographical regions. Main conclusions, The timing of diversification of these tanagers correlates well with the main uplift of the Northern Andes, with the highest rate of speciation occurring during this timeframe. Central American tanagers included in this study originated from South American lineages, and the timing of their dispersal into Central America coincides with or post-dates the completion of the Panamanian isthmus. [source]


Exploitation of food resources by badgers (Meles meles) in the Swiss Jura Mountains

JOURNAL OF ZOOLOGY, Issue 2 2005
C. Fischer
Abstract In our study three badger Meles meles populations separated by only a few km but subjected to different environmental conditions were compared. Differences are especially marked for climatic factors, the three areas being located at different altitudes, and for intensivity of soil use by people. The diet of the three populations was significantly different, with one or two dominant items in each area: mammals and cereals in the mountain, maize in the mid-mountain and in the lowland areas. In the most intensively cultivated area, maize was the most consumed item in autumn and spring, several months after harvesting. Earthworms had only a secondary importance in the diet in the mountainous area, but were negligible in the mid-mountain and lowland areas. Soil management seemed to play a preponderant role, mostly owing to soil quality and topography. Climate seemed to have a secondary effect only. [source]


Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe

BOREAS, Issue 4 2004
ANKER WEIDICK
The evolution of the southern Greenland Ice Sheet is interpreted from a synthesis of geological data and palaeoclimatic information provided by the ice-sheet cores. At the Last Glacial Maximum the ice margin would have been at the shelf break and the ice sheet was fringed by shelf ice. Virtually all of the present ice-free land was glaciated. The initial ice retreat was controlled by eustatic sea level rise and was mainly by calving. When temperatures increased, melt ablation led to further ice-margin retreat and areas at the outer coast and mountain tops were deglaciated. Retreat was interrupted by a readvance during the Neria stade that may correlate with the Younger Dryas cooling. The abrupt temperature rise at the Younger Dryas,Holocene transition led to a fast retreat of the ice margin, and after ,9 ka BP the ice sheet was smaller than at present. Expansion of the ice cover began in the Late Holocene, with a maximum generally during the Little Ice Age. The greatest changes in ice cover occurred in lowland areas, i.e. in the region of the Qassimiut lobe. The date of the historical maximum advance shows considerable spatial variability and varies between AD 1600 and the present. Local anomalous readvances are seen at possibly 7,8 ka and at c. 2 ka BP. A marked relative sea level rise is seen in the Late Holocene; this is believed to reflect a direct glacio-isostatic response to increasing ice load. [source]