Home About us Contact | |||
Lower R (lower + r)
Selected AbstractsPlant species traits and capacity for resource reduction predict yield and abundance under competition in nitrogen-limited grasslandFUNCTIONAL ECOLOGY, Issue 3 2006J. FARGIONE Summary 1The objective of this study is to test whether plant traits that are predicted by resource-competition theory to lead to competitive dominance are correlated with competitive response and abundance in a nitrogen-limited grassland. We collected species trait and soil nutrient data on non-leguminous perennial prairie plant species in replicated monoculture plots established for this purpose. 2The soil nitrate concentration of 13 species grown in long-term (5-year) monocultures (a measure of R*) was correlated with their relative yield (a measure of competitive response) and with their abundance in competition. The trait best correlated with a species' relative yield was root length density (RLD), and the trait best correlated with abundance in competition was biomass : N ratio. 3The traits that best predicted nitrate R* were the biomass : N ratio and allocation to fine roots, where species with higher biomass : N and allocation to fine roots had lower R*. Easily measured species traits may therefore be useful proxy measures for R*. 4The dominance of species with lower nitrate R* levels and higher RLD and biomass : N in monoculture is qualitatively consistent with the prediction of resource-competition theory that the species most efficient at acquiring, retaining and using the major limiting resource will be the best competitors. Additional mechanisms are needed to explain how these species coexist. [source] California annual grass invaders: the drivers or passengers of change?JOURNAL OF ECOLOGY, Issue 5 2010Janneke HilleRisLambers Summary 1.,The dominance of invasive species is often assumed to reflect their competitive superiority over displaced native species. However, invasive species may be abundant because of their greater tolerance to anthropogenic impacts accompanying their introduction. Thus, invasive species can either be the drivers or passengers of change. 2.,We distinguish between these two possibilities in California grasslands currently dominated by Mediterranean annuals (exotics) and subjected to livestock grazing since European settlement. We focused on native annual grasses and forbs, an understudied species-rich component of the California flora, and Mediterranean annual grasses, currently dominant and among the first non-native plants introduced to the area. 3.,We established a field experiment with fenced and unfenced blocks in a cattle pasture. We measured concentrations of limiting resources (nitrogen, phosphorus, light and soil moisture) in monoculture plots as an index of competitive ability (i.e. R*). We then quantified grazing impacts on biomass and seed production in grazed vs. ungrazed monoculture plots. Finally, we measured biomass and seed production of each species competing in mixture plots, in the presence and absence of grazers. 4.,We found that native and exotic species did not differ in R* indices of competitive ability, i.e. concentrations of limiting resources in ungrazed native monoculture plots did not differ from concentrations in ungrazed exotic monoculture plots. By contrast, exotic annuals suffered less from grazing than native annuals, perhaps reflecting their longer evolutionary history with cattle grazing. Consistent with these results, native and exotic annuals were equally abundant in ungrazed mixtures, but exotic species overwhelmingly dominated grazed mixtures. 5.,Species able to draw down nitrogen and light to lower levels in monocultures (i.e. those with lower R* values) dominated biomass and seeds in mixed plots without grazers. However, R* did not predict the relative abundance of species in grazed plots. Moreover, the relative abundance of species in mixtures did not correlate with grazing impacts on their monocultures, implying that grazing alters inter-specific competitive dynamics. 6.,Synthesis. We demonstrate that the displacement of native annuals by Mediterranean annual grasses in California may largely have been driven by cattle grazing. [source] Resource competition and plant traits: a response to Craine et al.JOURNAL OF ECOLOGY, Issue 2 2007Summary 1Resource competition theory incorporates the mechanisms that underlie consumer,resource interactions and the trade-offs that constrain these mechanisms. Contrary to assertions by Craine, the concept of R* as the measure of resource reduction and the predictor of resource competition has not changed since it was proposed more than two decades ago. 2Resource reduction, as summarized in R*, is readily observed. Soil concentrations of nitrate and water are decreased by plant uptake, and are lowered to different levels by different species. Tests have shown R* theory to correctly predict competitive outcomes for a variety of organisms and ecosystems. 3Consumer-resource mechanisms are a building block for theories that incorporate other trade-offs faced by plants, such as those between competitive ability and dispersal. 4Numerous plant traits interactively determine R* in a manner predictable from trait-based resource competition theory. The same traits shown by comparative research to be associated with plant dominance in low-nutrient habitats give lower R* values, greater predicted competitive ability and greater predicted abundances in nutrient-limited habitats. 5Plant ecology needs closer links between analytical theory, observations and experiments. Simple verbal theories can generate novel ideas but the logical implications of such scenarios are best explored using the rigorous logic of mathematics. Predictions of theory can then be tested via experiments and comparative studies. [source] Spatial patterns of desert annuals in relation to shrub effects on soil moistureJOURNAL OF VEGETATION SCIENCE, Issue 2 2010J. Li Abstract Questions: What are the effects of a shrub (Haloxylon ammodendron) on spatial patterns of soil moisture in different seasons? How does productivity of understorey annuals respond to these effects? Are such effects always positive for annuals under shrubs? Location: South Gurbantunggut Desert, northwest China. Methods: Using geostatistics, we explored seasonal patterns of topsoil moisture in a 12 × 9-m plot over the growing season. To determine spatial patterns of understorey annuals in response to H. ammodendron presence, biomass of annuals was recorded in four 0.2 × 5.0-m transects from the centre of a shrub to the space between shrubs (interspace). We also investigated vertical distribution of root biomass for annuals and soil moisture dynamics across soil profiles in shrub-canopied areas and interspaces. Results: Topsoil moisture changed from autocorrelation in the wet spring to random structure in the dry season, while soil moisture below 20 cm was higher in shrub-canopied areas. Across all microhabitats, soil moisture in upper soil layers was higher than in deeper soil layers during the spring wet season, but lower during summer drought. Topsoil was close to air-dry during the dry season and developed a ,dry sand layer' that reduced evaporative loss of soil water from deeper layers recharged by snowmelt in spring. Aboveground biomass of understorey annuals was lowest adjacent to shrub stems and peaked at the shrub margin, forming a ,ring' of high herbaceous productivity surrounding individual shrubs. To acclimate to drier conditions, annuals in interspaces invested more root biomass in deeper soil with a root/shoot ratio (R/S) twice that in canopied areas. Conclusions: Positive and negative effects of shrubs on understorey plants in arid ecosystems are commonly related to nature of the environmental stress and tested species. Our results suggest there is also microhabitat-dependence in the Gurbantunggut Desert. Soil water under H. ammodendron is seasonally enriched in topsoil and deeper layers. Understorey annuals respond to the effect of shrubs on soil water availability with lower R/S and less root biomass in deeper soil layers and develop a ,ring' of high productivity at the shrub patch margin where positive and negative effects of shrubs are balanced. [source] |