Home About us Contact | |||
Lower Efficiency (lower + efficiency)
Selected AbstractsPhotovoltaic thin-film technology based on hydrogenated amorphous siliconPROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 2 2002P. Lechner Solar modules based on amorphous silicon combine a number of properties that lead to a wide range of attractive applications, from watch dials to roof integration and semitransparent insulating glazing. The specificities of manufacturing are described, and it can be shown that they ultimately render competitive manufacturing costs and hence total system costs sufficiently low to offset the drawback of lower efficiencies. Copyright © 2002 John Wiley & Sons, Ltd. [source] Performance and cost analysis of future, commercially mature gasification-based electric power generation from switchgrassBIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 2 2009Haiming Jin Abstract Detailed process designs and mass/energy balances are developed using a consistent modeling framework and input parameter assumptions for biomass-based power generation at large scale (4536 dry metric tonnes per day switchgrass input), assuming future commercially mature component equipment performance levels. The simulated systems include two gasification-based gas turbine combined cycles (B-IGCC) designed around different gasifier technologies, one gasification-based solid oxide fuel cell cycle (B-IGSOFC), and a steam-Rankine cycle. The simulated design-point efficiency of the B-IGSOFC is the highest among all systems (51.8%, LHV basis), with modestly lower efficiencies for the B-IGCC design using a pressurized, oxygen-blown gasifier (49.5% LHV) and for the B-IGCC design using a low-pressure indirectly heated gasifier (48.6%, LHV). The steam-Rankine system has a simulated efficiency of 33.0% (LHV). Detailed capital costs are estimated assuming commercially mature (,Nth plant') technologies for the two B-IGCC and the steam-Rankine systems. B-IGCC systems are more capital-intensive than the steam-Rankine system, but discounted cash flow rate of return calculations highlight the total cost advantage of the B-IGCC systems when biomass prices are higher. Uncertainties regarding prospective mature-technology costs for solid oxide fuel cells and hot gas sulfur clean-up technologies assumed for the B-IGSOFC performance analysis make it difficult to evaluate the prospective electricity generating costs for B-IGSOFC relative to B-IGCC. The rough analysis here suggests that B-IGSOFC will not show improved economics relative to B-IGCC at the large scale considered here. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd [source] Corruption and Entrepreneurship: How Formal and Informal Institutions Shape Small Firm Behavior in Transition and Mature Market EconomiesENTREPRENEURSHIP THEORY AND PRACTICE, Issue 5 2010Vartuhí Tonoyan This article explores the determinants of corruption in transition economies of the post-Soviet Union, Central-Eastern Europe, and Western industrialized states. We look in-depth at the East,West gap in corruption, and why entrepreneurs and small business owners become engaged in corrupt deals. Part of the answers lie in the country-specific formal and informal institutional make-up. The likelihood of engaging in corruption is influenced by the lower efficiency of financial and legal institutions and the lack of their enforcements. Also, viewing illegal business activities as a widespread business practice provides the rationale for entrepreneurs to justify their own corrupt activities. Moreover, closed social networks with family, friends, and national bureaucrats reduce the opportunism of the contracting party of the corrupt deal, thus providing breeding grounds for corruption. [source] tmRNA from Thermus thermophilusFEBS JOURNAL, Issue 3 2003Interaction with alanyl-tRNA synthetase, elongation factor Tu The interaction of a Thermus thermophilus tmRNA transcript with alanyl-tRNA synthetase and elongation factor Tu has been studied. The synthetic tmRNA was found to be stable up to 70 °C. The thermal optimum of tmRNA alanylation was determined to be around 50 °C. At 50 °C, tmRNA transcript was aminoacylated by alanyl-tRNA synthetase with 5.9 times lower efficiency (kcat/Km) than tRNAAla, primarily because of the difference in turnover numbers (kcat). Studies on EF-Tu protection of Ala,tmRNA against alkaline hydrolysis revealed the existence of at least two different binding sites for EF-Tu on charged tmRNA. The possible nature of these binding sites is discussed. [source] Induction of apoptosis in monocytes by Mycobacterium leprae in vitro: a possible role for tumour necrosis factor-,IMMUNOLOGY, Issue 1 2003M. O. Hernandez Summary A diverse range of infectious organisms, including mycobacteria, have been reported to induce cell death in vivo and in vitro. Although morphological features of apoptosis have been identified in leprosy lesions, it has not yet been determined whether Mycobacterium leprae modulates programmed cell death. For that purpose, peripheral blood mononuclear cells obtained from leprosy patients were stimulated with different concentrations of this pathogen. Following analysis by flow cytometry on 7AAD/CD14+ cells, it was observed that M. leprae induced apoptosis of monocyte-derived macrophages in a dose-dependent manner in both leprosy patients and healthy individuals, but still with lower efficiency as compared to M. tuberculosis. Expression of tumour necrosis factor-, (TNF-,), Bax-,, Bak mRNA and TNF-, protein was also detected in these cultures; in addition, an enhancement in the rate of apoptotic cells (and of TNF-, release) was noted when interferon-, was added to the wells. On the other hand, incubation of the cells with pentoxifylline impaired mycobacterium-induced cell death, the secretion of TNF-,, and gene expression in vitro. In addition, diminished bacterial entry decreased both TNF-, levels and the death of CD14+ cells, albeit to a different extent. When investigating leprosy reactions, an enhanced rate of spontaneous apoptosis was detected as compared to the unreactive lepromatous patients. The results demonstrated that M. leprae can lead to apoptosis of macrophages through a mechanism that could be at least partially related to the expression of pro-apoptotic members of the Bcl-2 protein family and of TNF-,. Moreover, while phagocytosis may be necessary, it seems not to be crucial to the induction of cell death by the mycobacteria. [source] Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzymeJOURNAL OF MOLECULAR RECOGNITION, Issue 2 2009A.S. Pina Abstract High blood pressure or hypertension is a condition affecting many individuals and represents a controllable risk factor for cardiovascular diseases such as coronary heart disease and stroke. A non-pharmacological approach to manage these includes the application of food components with antihypertensive activity. Milk protein-derived peptides have been exploited as natural hypotensive agents, namely the peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP), already commercialized in functional foods as a potential alternative to synthetic drugs. These bioactive peptides inhibit in vitro and in vivo the Angiotensin I-converting enzyme (ACE), a protein with an important role in blood pressure regulation. In this work, we attempted to elucidate the possible mode of interaction between the peptides and ACE, including mechanisms of binding to the cofactor Zn2+, and further contrast this with the known mode of inhibition exerted by synthetic drugs (Captopril, Enalaprilat and Lisinopril). The bioactive peptide Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR), also known to inhibit the enzyme ACE but with a lower efficiency than VPP and IPP, was utilized in the docking studies for comparison. It was observed that the best docking poses obtained for VPP and IPP were located at the ACE catalytic site with very high resemblance to the drugs mode of interaction, including the coordination with Zn2+. As for ALPMHIR, the best docking poses were located in the narrow ACE channel outside the catalytic site, representing higher affinity energies and fewer resemblances with the interaction established by drugs. Copyright © 2008 John Wiley & Sons, Ltd. [source] Non-homologous DNA end joining in the mature rat brainJOURNAL OF NEUROCHEMISTRY, Issue 6 2002Keqin Ren Abstract Recent evidence suggests that DNA double strand breaks (DSBs) are introduced in neurons during the course of normal development, and that repair of such DSBs is essential for neuronal survival. Here we describe a non-homologous DNA end joining (NHEJ) system in the adult rat brain that may be used to repair DNA DSBs. In the brain NHEJ system, blunt DNA ends are joined with lower efficiency than cohesive or non-matching protruding ends. Moreover, brain NHEJ is blocked by DNA ligase inhibitors or by dATP and can occur in the presence or absence of exogenously added ATP. Comparison of NHEJ activities in several tissues showed that brain and testis share similar mechanisms for DNA end joining, whereas the activity in thymus seems to utilize different mechanisms than in the nervous system. The developmental profile of brain NHEJ showed increasing levels of activity after birth, peaking at postnatal day 12 and then gradually decreasing along with age. Brain distribution analysis in adult animals showed that NHEJ activity is differentially distributed among different regions. We suggest that the DNA NHEJ system may be utilized in the postnatal brain for the repair of DNA double strand breaks introduced within the genome in the postnatal brain. [source] Additive interactions in the stabilization of film grade high-density polyethylene.JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 2 2002Part I: Stabilization, influence of zinc stearate during melt processing The melt stabilization activity of some of the most commercially significant phenolic antioxidants and phosphites (alone and in combination), without and with zinc stearate, was studied in high-density polyethylene (HDPE) produced by Phillips catalyst technology. Multiple pass extrusion experiments were used to degrade the polymer melt progressively. The effect of stabilizers was assessed via melt flow rate (MFR) and yellowness index (YI) measurements conducted as a function of the number of passes. The level of the phenolic antioxidant remaining after each extrusion was determined by high-performance liquid chromatography (HPLC). Phenolic antioxidants and phosphites both improved the melt stability of the polymer in terms of elt viscosity retention; the influence of zinc stearate was found to be almost insignificant. However, phosphites and zinc stearate decreased the discoloration caused by the phenolic antioxidants. A correlation was found between the melt stabilization performance of phosphites and their hydroperoxide decomposition efficiency determind via a model hydroperoxide compound. Steric and electronic effects associated with the phosphorus atom influenced the reactivity towards hydroperoxides. Furthermore, high hydrolytic stability did not automatically result in lower efficiency. Besides phosphite molecular structure, stabilization activity was also influenced by the structure of the primary phenolic antioxidant and the presence of zinc stearate. [source] Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspikePROTEIN SCIENCE, Issue 6 2004Brian G. Lefebvre Abstract Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the ,-helix during monomer collapse, while G244R is primarily an assembly defect. [source] Drug impurity profiling by capillary electrophoresis/mass spectrometry using various ionization techniquesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2009Paul Hommerson Capillary electrophoresis/mass spectrometry (CE/MS) is predominantly carried out using electrospray ionization (ESI). Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have become available for CE/MS. With the VUV lamp turned off, the APPI source may also be used for CE/MS by thermospray ionization (TSI). In the present study the suitability of ESI, APCI, APPI and TSI for drug impurity profiling by CE/MS in the positive ion mode is evaluated. The drugs carbachol, lidocaine and proguanil and their potential impurities were used as test compounds, representing different molecular polarities. A background electrolyte of 100,mM acetic acid (pH 4.5) provided baseline separation of nearly all impurities from the respective drugs. APPI yielded both even- and odd-electron ions, whereas the other ionization techniques produced even-electron ions only. In-source fragmentation was more pronounced with APCI and APPI than with ESI and TSI, which was most obvious for proguanil and its impurities. In general, ESI and TSI appeared the most efficient ionization techniques for impurities that are charged in solution achieving detection limits of 100,ng/mL (full-scan mode). APPI and APCI showed a lower efficiency, but allowed ionization of low and high polarity analytes, although quaternary ammonium compounds (e.g. carbachol) could not be detected. Largely neutral compounds, such as the lidocaine impurity 2,6-dimethylaniline, could not be detected by TSI, and yielded similar detection limits (500,ng/mL) for ESI, APPI and APCI. In many cases, impurity detection at the 0.1% (w/w) level was possible when 1,mg/mL of parent drug was injected with at least one of the CE/MS systems. Overall, the tested CE/MS systems provide complementary information as illustrated by the detection and identification of an unknown impurity in carbachol. Copyright © 2009 John Wiley & Sons, Ltd. [source] cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survivalTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2008Tadahiro Fujino Abstract Many ligands that affect nervous system development are members of gene families that function together to coordinate the assembly of complex neural circuits. cpg15/neuritin encodes an extracellular ligand that promotes neurite growth, neuronal survival, and synaptic maturation. Here we identify cpg15-2 as the only paralogue of cpg15 in the mouse and human genome. Both genes are expressed predominantly in the nervous system, where their expression is regulated by activity. cpg15-2 expression increases by more than twofold in response to kainate-induced seizures and nearly fourfold in the visual cortex in response to 24 hours of light exposure following dark adaptation. cpg15 and cpg15-2 diverge in their spatial and temporal expression profiles. cpg15-2 mRNA is most abundant in the retina and the olfactory bulb, as opposed to the cerebral cortex and the hippocampus for cpg15. In the retina, they differ in their cell-type specificity. cpg15 is expressed in retinal ganglion cells, whereas cpg15-2 is predominantly in bipolar cells. Developmentally, onset of cpg15-2 expression is delayed compared with cpg15 expression. CPG15-2 is glycosylphosphatidylinositol (GPI) anchored to the cell membrane and, like CPG15, can be released in a soluble-secreted form, but with lower efficiency. CPG15 and CPG15-2 were found to form homodimers and heterodimers with each other. In hippocampal explants and dissociated cultures, CPG15 and CPG15-2 promote neurite growth and neuronal survival with similar efficacy. Our findings suggest that CPG15 and CPG15-2 perform similar cellular functions but may play distinct roles in vivo through their cell-type- and tissue-specific transcriptional regulation. J. Comp. Neurol. 507:1831,1845, 2008. © 2008 Wiley-Liss, Inc. [source] Transgenic wheat: where do we stand after the first 12 years?ANNALS OF APPLIED BIOLOGY, Issue 1 2005H.D. Shewry Jones Abstract Wheat was among the last of the major crops to be transformed (in 1992), and transformation is still difficult, with a lower efficiency than that for maize and rice. However, the recent development of Agrobacterium -based systems is set to improve the precision of the process, while new methods of selection, removal of unnecessary DNA sequences, gene targeting and in vivo mutagenesis will make the process cleaner and more acceptable to regulatory authorities and consumers. Our current work is focussed on using transformation to understand and manipulate aspects of grain processing quality, notably dough strength and texture for milling. However, it is clear that a major priority for future work will be to improve nutritional quality, including vitamin and mineral contents for the developing world and starch digestibility and dietary fibre content and composition for developed countries. [source] Biochemical Studies of the Thermal Effects on DNA Modifications by the Antitumor Cisplatin and Their RepairCHEMBIOCHEM, Issue 16 2007Anna Halamikova Mgr. Abstract Using biochemical methods, we have examined the effect of two factors that might play a role in the mechanism of the biological activity of cisplatin at elevated temperatures (>37°C). We show that increased temperatures result in distinct alterations in the modification of the target DNA by cisplatin, and in the repair of these modifications. Our in vitro results support the view that the enhanced DNA-cross-linking efficiency of cisplatin and the lower efficiency of native DNA repair mechanisms at higher temperature play at least a partial role in the potentiation of the antitumor effects of cisplatin under conditions of mild hyperthermia. [source] |