Home About us Contact | |||
Lower Crust (lower + crust)
Selected AbstractsPetrochemistry of Volcanic Rocks in the Hishikari Mining Area of Southern Japan, with Implications for the Relative Contribution of Lower Crust and Mantle-derived BasaltRESOURCE GEOLOGY, Issue 4 2003Takahiro Hosono Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene-Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4,1.0 Ma) and Shishimano (1.7,0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction-related arc volcanic rocks. Modal and whole-rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so-called EMI-type Sr-Nd and DUPAL anomaly-like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high-alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component. [source] Investigation of coupling between surface processes and induced flow in the lower continental crust as a cause of intraplate seismicityEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2006Rob Westaway Abstract Many studies have highlighted the role of coupling between surface processes and flow in the lower continental crust in deforming the crust and creating topographic relief over Quaternary timescales. On the basis of the rheological knowledge gained, it is suggested that intraplate seismicity can also be caused by coupling between surface processes and flow in the lower continental crust. This view is shown to be a natural consequence of the modern idea that isostatic equilibrium is maintained by flow in the weak lower crust in response to erosion and sedimentation. It is supported by a general correlation between the vigour of surface processes and rates of intraplate seismicity, and by instances of seasonal seismicity that correlates with seasonal climate. Human interference in the environment can affect surface loading: for instance, deforestation for agriculture or urban development can cause increased erosion rates; global warming is expected to cause increased storminess (and thus increased erosion rates) and/or global sea-level rise. The possibility of increased rates of seismicity resulting from these processes should thus be considered in future hazard assessment. Copyright © 2006 John Wiley & Sons, Ltd. [source] Grain-scale permeabilities of faceted polycrystalline aggregatesGEOFLUIDS (ELECTRONIC), Issue 4 2006J. D. PRICE Abstract Porous synthetic quartzites and amphibolites, each with faceted pore walls, were synthesized and evaluated to examine the permeability of pore networks similar to those of the lower crust and mantle. Quartzite with a fluid in equilibrium with an Mg,clinopyroxene contained connected networks of pores with a dihedral angle of 30° bounded by walls that were 10,50% faceted. The relationship of their permeability (k) to porosity (,) is approximated by the previously determined relationship for relatively nonfaceted synthetic quartzite Amphibolite with an HF fluid contained fluorotremolite and a connected network of pores bounded by walls exhibiting 78,90% faceting. These materials showed much lower k for a given ,, with an apparent permeability threshold at ,c = 0.04. A curve fit to these data yields The results suggest that moderate faceting has little effect on the transmission of fluids through rocks, but extensive faceting significantly alters permeability. This difference is most likely produced through isolation of the fluid to the grain corners at low , with extensive faceting. Rocks with pores that tend toward faceting may impede the flow of fluids and melt. [source] Origin, age and petrogenesis of Neoproterozoic composite dikes from the Arabian-Nubian Shield, SW JordanGEOLOGICAL JOURNAL, Issue 2 2004G. Jarrar Abstract The evolution of a Pan-African (c. 900,550,Ma) suite of composite dikes, with latite margins and rhyolite interiors, from southwest Jordan is discussed. The dikes cut the Neoproterozoic calc-alkaline granitoids and high-grade metamorphic rocks (c. 800,600,Ma) of the northern Arabian-Nubian Shield in Jordan and have been dated by the Rb-Sr isochron method at 566±7,Ma. The symmetrically distributed latite margins constitute less than one-quarter of the whole dike thickness. The rhyolite intruded a median fracture within the latite, while the latter was still hot but completely solidified. The dikes are alkaline and bimodal in composition with a gap in SiO2 between 61 and 74,wt%. Both end members display similar chondrite-normalized rare earth element patterns. The rhyolites display the compositional signature of A-type granites. The (La/Lu)N values are 6.02 and 4.91 for latites and rhyolites, respectively, and the rhyolites show a pronounced negative Eu anomaly, in contrast to the slight negative Eu anomaly of the latites. The chemical variability (e.g. Zr/Y, Zr/Nb, K/Rb) within and between latites and rhyolites does not support a fractional crystallization relationship between the felsic and mafic members of the dikes. We interpret the magma genesis of the composite dikes as the result of intrusion of mantle-derived mafic magma into the lower crust in an extensional tectonic regime. The mafic magma underwent extensive fractional crystallization, which supplied the necessary heat for melting of the lower crust. The products of the initial stages of partial melting (5,10%) mixed with the fractionating mafic magma and gave rise to the latite melts. Further partial melting of the lower crust (up to 30%) produced a felsic melt, which upon 50% fractional crystallization (hornblende 15%, biotite 5%, feldspars 60%, and quartz 20%) gave rise to the rhyolitic magma. Copyright © 2004 John Wiley & Sons, Ltd. [source] Uplift at lithospheric swells,I: seismic and gravity constraints on the crust and uppermost mantle structure of the Cape Verde mid-plate swellGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2010D. J. Wilson SUMMARY Wide-angle seismic data have been used to determine the velocity and density structure of the crust and uppermost mantle beneath the Cape Verdes mid-plate swell. Seismic modelling reveals a ,standard' oceanic crust, ,8 km in thickness, with no direct evidence for low-density bodies at the base of the crust. Gravity anomaly modelling within the constraints and resolution provided by the seismic model, does not preclude, however, a layer of crustal underplate up to 3 km thick beneath the swell crest. The modelling shows that while the seismically constrained crustal structure accounts for the short-wavelength free-air gravity anomaly, it fails to fully explain the long-wavelength anomaly. The main discrepancy is over the swell crest where the gravity anomaly, after correcting for crustal structure, is higher by about 30 mGal than it is over its flanks. The higher gravity can be explained if the top 100 km of the mantle beneath the swell crest is less dense than its surroundings by 30 kg m,3. The lack of evidence for low densities and velocities in the uppermost mantle, and high densities and velocities in the lower crust, suggests that neither a depleted swell root or crustal underplate are the origin of the observed shallower-than-predicted bathymetry and that, instead, the swell is most likely supported by dynamic uplift associated with an anomalously low density asthenospheric mantle. [source] The bright spot in the West Carpathian upper mantle: a trace of the Tertiary plate collision,and a caveat for a seismologistGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2010Piotr SUMMARY The 2-D full waveform modelling of the mantle arrivals from the CELEBRATION 2000 profiles crossing the Carpathian orogen suggests two possible tectonic models for the collision of ALCAPA (Alpine-Carpathian-Pannonian) and the European Plate in the West Carpathians in southern Poland and Slovakia. Due to an oblique (NE-SW) convergence of plates, the character of the collision may change along the zone of contact of the plates: in the western part of the area an earlier collision might have caused substantial crustal shortening and formation of a crocodile-type structure, with the delaminated lower crust of ,100 km length acting as a north-dipping reflecting discontinuity in the uppermost mantle. In the eastern part, a less advanced collision only involved the verticalization of the subducted slab remnant after a slab break-off. The lower crustal remnant of ,10 km size in the uppermost mantle acts as a pseudo-diffractor generating observable mantle arrivals. Due to the similarity of synthetic data generated by both models, the question of the non-uniqueness of seismic data interpretation, that may lead to disparate tectonic inferences, is also discussed. [source] Waveform modelling of teleseismic S, Sp, SsPmP, and shear-coupled PL waves for crust- and upper-mantle velocity structure beneath AfricaGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2007Abhijit Gangopadhyay SUMMARY We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S, Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200,800 km), moderate-to-large magnitude (5.5,7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21,46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7,8 km s,1) and S -wave velocities (2.5,4.7 km s,1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa. [source] Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New ZealandGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006Antony Harrison SUMMARY Seismic data from both explosive and earthquake sources have been used to model the crustal and upper-mantle velocity structure beneath the Taupo Volcanic Zone (TVZ), an active backarc basin in central North Island, New Zealand. Volcanic sediments with P -wave velocities of 2.0,3.5 km s,1 reach a maximum thickness of 3 km beneath the central TVZ. Underlying these sediments to 16 km depth is material with velocities of 5.0,6.5 km s,1, interpreted as quartzo-feldspathic crust. East and west of the TVZ, crust with similar velocities is found to depths of 30 and 25 km, respectively. Beneath the TVZ, material with P -wave velocities of 6.9,7.3 km s,1 is found from 16 to 30 km depth and is interpreted as heavily intruded or underplated lower crust. The base of the crust at 30 km depth under the TVZ is marked by a strong seismic reflector, interpreted as the Moho. Modelling of arrivals from deep (>40 km) earthquakes near the top of the underlying subducting Pacific Plate reveals a region with low mantle velocities of 7.4,7.8 km s,1 beneath the crust of the TVZ. This region of low mantle velocities is best explained by the presence of partially hydrated upper mantle, resulting from dehydration of hydrous minerals (e.g. serpentinite) carried down by the underlying subducting plate. Within the lower crust beneath the TVZ, a region of high (0.34) Poisson's ratio is observed, indicating the presence of at least 1 per cent partial melt. This melt probably fractionates and assimilates crustal material before some of it migrates into the upper crust, where it provides a source for the voluminous rhyolitic magmas of the TVZ. [source] Viscoelastic,afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6, 1999 Chi-Chi (Taiwan) earthquakeGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004Shyh-Yang Sheu SUMMARY Observed coseismic data as well as 97 days of post-seismic GPS data for the Chi-Chi earthquake are used as constraints in the modelling of crustal evolution using the 3-D finite-element method. First, the coseismic GPS data are used to justify the use of the elastic earth model and the source rupture model. Subsequently, the most likely rheological model is determined by analysing several modelled time-dependent displacements for various viscosity structures. The range of viscosities of the lower crust in central Taiwan is determined in advance from laboratory measurements and the long-term strain rate. The estimated viscosity of 5.0 × 1017 Pa s seems to be very low and a relaxation time of 116 days seems very short, but the latter approximates the GPS measurement of 86 days. Since earlier studies have indicated that both the viscoelastic response model and the afterslip model may affect post-seismic deformation, we compare theoretical surface displacements for each of the two models that we evaluate. The results reveal that there is little doubt that while neither of these models alone is able to predict the GPS measurements well in a 97-day period, the combination of the two models improves the predictions considerably. We conclude that the afterslip mainly dominated Chi-Chi post-seismic deformation in the rupture area while the viscoelastic model did so elsewhere. [source] A preliminary study of crustal structure in Taiwan region using receiver function analysisGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004Kwang-Hee Kim SUMMARY Selected teleseismic data observed at temporary and permanent broad-band stations have been analysed using the receiver function method in order to investigate the very complex crustal structure in Taiwan region. Very significant azimuthal variations of radial and transverse receiver function responses from broad-band stations could be attributed to, among other things, the sampling of incoming seismic waves across the nearby subduction zone, a subsurface dipping interface, or a localized anisotropic region. A mid-crust discontinuity, interpreted as the Conrad discontinuity, can be identified at 18,20 km depth beneath TATO and TPUB stations in the Western Foothills, but is absent beneath the two nearby stations SSLB and TDCB in the Central Mountain Range. The separation of upper and lower crust beneath the Western Foothills and the steady increase in crustal velocity as a function of depth across the entire thicker crust beneath the Central Mountain Range suggest that the tectonic evolution of the crust may be significantly different for these two adjacent regions. Although a ,thin-skinned' model may be associated with the tectonic evolution of the upper crust of the Western Foothills and Western Coastal Plain, a ,thick-skinned' or ,lithospheric deformation' model can probably be applied to explain the crustal evolution of the Central Mountain Range. A trend of crustal thinning from east (50,52 km) to west (28,32 km) is in very good agreement with the results from two east,west-trending deep seismic profiles obtained using airgun sources. The thinner crust (20,30 km) beneath TWB1 station in northeastern Taiwan can be associated with the high-heat-flow backarc opening at the western terminus of the Okinawa trough behind the subduction of the Philippine Sea plate. The relatively simple crustal structure beneath KMNB station, offshore southeastern China, depicts typical continental crust, with the Moho depth at 28,32 km. An apparent offset of the thickest Moho beneath NACB station from the topographic high in the central Central Mountain Range suggests that the Taiwan orogeny has probably not reached its isostatic status. [source] Magnitude calibration of north Indian earthquakesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004N. N. Ambraseys SUMMARY This article is concerned primarily with the evaluation of the size and location of northern Indian and southern Tibetan earthquakes during the last 200 yr. It draws attention to the problems of assessing intensity of early and more recent earthquakes in a built environment, which is different from that for which the intensity scale has been constructed and to the way in which isoseismals are drawn. Through a re-evaluation of intensities and a reassessment of isoseismals, a formula for the estimation of surface wave magnitude using isoseismal radii is derived. This formula is used to estimate the surface wave magnitudes of 16 earthquakes that occurred in the region between 1803 and 1900. This study shows that it is possible to calculate accurate surface wave magnitudes for earthquakes that occurred before the advent of the scale and that there is no need to resort to empirical formulae for the assessment of the size and seismic moment release of pre-20th-century earthquakes. Also derived are formulae for the conversion of Ms to M0. In total, locations, surface wave magnitudes and M0 estimates are presented for 43 important events that occurred in the region between 1803 and 1974, eight of which were in the lower crust or were subcrustal. We find that the M0,Ms scaling for India yields smaller Ms than the global relation and that the methodology used can help to evaluate more realistic slip rates as well as to address other issues related to earthquake hazard in northern India. [source] Modelling electromagnetic responses of 2-D structures due to spatially non-uniform inducing fields.GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2003Analysis of magnetotelluric source effects at coastlines SUMMARY In previous works, we presented 2-D and 3-D magnetotelluric modelling methods based on Rayleigh,Fourier expansions. These methods are an alternative to finite-element and finite-difference techniques and are especially suitable for modelling multilayered structures, with smooth irregular boundaries. Here we generalize the 2-D method for the calculation of the electromagnetic response of 2-D structures to arbitrary, spatially non-uniform 2-D and 3-D inducing magnetic fields. These fields are characteristic of low- and high-latitude regions. We calculate the response to different 2-D and 3-D sources, of a 2-D structure representative of the conductivity distribution which could be found at a coastline, which includes deep conductive anomalies in the lower crust and upper mantle. Then, we investigate source effects, comparing these responses to that obtained for a uniform source. These effects become noticeable for periods greater than approximately 6 h and increase with the period of the source. They are highly dependent on the morphology of the source and also on the orientation of the external field relative to the strike direction of the structure. In various cases, they totally mask the uniform source response. [source] First evidence of post-seismic deformation in the central Mediterranean: Crustal viscoelastic relaxation in the area of the 1980 Irpinia earthquake (Southern Italy)GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2003G. Dalla Via SUMMARY Comparison between measured vertical displacements obtained from two levelling campaigns performed in 1981 and 1985 in the epicentral area of the 1980 Irpinia earthquake (MS= 6.9) and predictions from viscoelastic Earth models reveal the occurrence of post-seismic deformation due to stress relaxation in the ductile part of the crust. Two regions of broad uplift and subsidence, accumulated during the time interval, characterize the deformation pattern in the footwall and hangingwall of the major fault. The spatial wavelength of the deformation pattern favours relaxation occurring in the lower crust rather than in a weak upper-mantle: the uplift in the footwall explains the 30 mm of upwarping of the crust measured along the levelling line crossing the area where the fault pierces the Earth's surface. [source] On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faultsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001J. Vergne Summary Creeping dislocations in an elastic half-space are commonly used to model interseismic deformation at subduction zones, and might also apply to major intracontinental thrust faults such as the Main Himalayan Thrust. Here, we compare such models with a more realistic 2-D finite element model that accounts for the mechanical layering of the continental lithosphere and surface processes, and that was found to fit all available constraints on interseismic and long-term surface displacements. These can also be fitted satisfactorily from dislocation models. The conventional back-slip model, commonly used for subduction zones, may, however, lead to a biased inference about the geometry of the locked portion of the thrust fault. We therefore favour the use of a creeping buried dislocation that simulates the ductile shear zone in the lower crust. A limitation of dislocation models is that the mechanical response of the lithosphere to the growth of the topography by bending of the elastic cores and ductile flow in the lower crust cannot be easily introduced. Fortunately these effects can be neglected because we may assume, to first order, a stationary topography. Moreover, we show that not only can dislocation models be used to adjust surface displacements but, with some caution, they can also provide a physically sound rationale to interpret interseismic microseismicity in terms of stress variations. [source] Crustal structure of central and northern Iceland from analysis of teleseismic receiver functionsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000Fiona A. Darbyshire We present results from a teleseismic receiver function study of central and northern Iceland, carried out during the period 1995,1998. Data from eight broad-band seismometers installed in the SIL network operated by the Icelandic Meteorological Office were used for analysis. Receiver functions for each station were generated from events for a wide range of backazimuths and a combination of inversion and forward modelling was used to infer the crustal structure below each station. The models generated show a considerable variation in the nature and thickness of the crust across Iceland. The thinnest crust (20,21 km) is found in the northern half of the Northern Volcanic Zone approximately 120 km north of the centre of the Iceland mantle plume. Thicker crust (24,30 km) is found elsewhere in northern and central Iceland and the thickest crust (37 km) is found close to the plume centre. Velocity,depth profiles show a distinct division of the crust into two main sections, an upper high-velocity-gradient section of thickness 2,8 km and a lower crustal section with small or zero overall velocity gradient. The thickness of the upper crust correlates with the tectonic structure of Iceland; the upper crust is thickest on the flanks of the northern and central volcanic rift zones and thinnest close to active or extinct central volcanoes. Below the Krafla central volcano in northeastern Iceland the receiver function models show a prominent low-velocity zone at 10,15 km depth with minimum shear wave velocities of 2.0,2.5 km s,1. We suggest that this feature results from the presence of partially molten sills in the lower crust. Less prominent low-velocity zones found in other regions of Iceland may arise from locally high temperatures in the crust or from acidic intrusive bodies at depth. A combination of the receiver function results and seismic refraction results constrains the crustal thickness across a large part of Iceland. Melting by passive decompression of the hot mantle below the rift zone in northern Iceland forms a crust of thickness ,20 km. In contrast, the larger crustal thickness below central Iceland probably arises from enhanced melt production due to active upwelling in the plume core. [source] Electrical conductivity and crustal structure beneath the central Hellenides around the Gulf of Corinth (Greece) and their relationship with the seismotectonicsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000V. N. Pham A deep magnetotelluric sounding (MTS) investigation in the western part of the Gulf of Corinth has revealed a complex electrical image of the crustal structure. The geotectonic structure of the Parnassos unit and the Transition zone in the central Hellenides, overthrusting the Pindos zone both towards the west and towards the south, has been clearly identified by its higher resistivity and its intrinsic anisotropy related to the N,S strike of the Hellenides range. Subsequent N,S extension of the Gulf introduced another heterogeneous anisotropy characteristic that corresponds to E,W-trending normal faults on both sides of the Gulf. The 2-D modelling of the MTS results reveals the existence of a relatively conductive layer about 4 km thick at a depth greater than 10 km in the middle crust. It corresponds to a ductile detachment zone suggested by microseismic and seismic studies (King et al. 1985; Rigo et al. 1996; Bernard et al. 1997a). It may be attributed to the phyllite series lying between the allochthonous Hellenic nappes and the autochthonous Plattenkalk basement. Towards the east, under the Pangalos peninsula, approaching the internal Hellenides, the detachment zone could root deeply into the lower crust. Some strong local electrical anomalies are observed, reaching the conductive layer in the middle crust, such as that under the Mamousia fault and under the front of the overthrust of the Transition zone on the Pindos zone. Other anomalies affect only the shallower zones such as that beneath the Helike fault and in the Psaromita peninsula. These shallower anomalies provide complementary information to the study of spatial and temporal variations of the seismic anisotropy in relation to the short- and long-term tectonic activity of the Gulf (Bouin et al. 1996; Gamar et al. 1999). [source] Crustal versus asthenospheric relaxation and post-seismic deformation for shallow normal faulting earthquakes:the Umbria,Marche (central Italy) caseGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000R. Riva Summary Following a normal mode approach for a stratified viscoelastic earth, we investigate the effects induced by shallow normal faulting earthquakes, on surface post-seismic vertical displacement and velocity at the surface, when stress relaxation occurs in the crust or in the asthenosphere. The modelled earthquake is a moderate one characteristic of some slowly deforming plate boundaries in the central Mediterranean region. We focus on the Umbria,Marche (central Italy) region where deep seismic reflection studies (CROP03) and the 1997 earthquake sequence clearly show a seismogenic layer decoupled from the lower crust by a sizeable transition zone. Accordingly, the crust is subdivided into three layers: an elastic upper crust, a transition zone and a low-viscosity lower crust. The fault is embedded in the upper crust. The layered viscoelastic structure of the crust and mantle imposes a pattern and scale on the modelled coseismic and post-seismic deformation with a major contribution from the transition crustal zone and low-viscosity lower crust, stress relaxation in the mantle being negligible. We show that significant vertical deformation rates of the order of 1 mm yr, 1 could be expected for a shallow and moderate event such as the recent Umbria,Marche earthquake for viscosity values of 1019 and 1018 Pa s in the crustal transition zone and lower crust, respectively. [source] P,T,t path of the Hercynian low-pressure rocks from the Mandatoriccio complex (Sila Massif, Calabria, Italy): new insights for crustal evolutionJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2010A. LANGONE Abstract The tectono-metamorphic evolution of the Hercynian intermediate,upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P,T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P,T paths have been constrained for metapelites of the basal level of the intermediate,upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium- P metamorphic assemblages (garnet- and staurolite-bearing assemblages) towards low- P/high -T metamorphic assemblages (fibrolite- and cordierite-bearing assemblages). Peak-metamorphic conditions of ,590 °C and 0.35 GPa are estimated by integrating microstructural observations with P,T pseudosections calculated for bulk-rock and reaction-domain compositions. The top level of the intermediate,upper crust (Campana area) recorded only the major heating phase at low- P (,550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U,Th,Pb dating of monazite from schists containing low -P/high -T metamorphic assemblages gave a weighted mean U,Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low -P/high -T metamorphism in the intermediate-to-upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P,T evolution both in the lower and upper crust. It is proposed that post,collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust. [source] Polymetamorphism, zircon growth and retention of early assemblages through the dynamic evolution of a continental arc in Fiordland, New ZealandJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2009J. M. SCOTT Abstract The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high- P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta-gabbroic xenoliths up to 2 km wide that are enclosed within meta-leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite,anorthite,kyanite or corundum ± rutile assemblage, and as diffusion-zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al-enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite,staurolite,chlorite,plagioclase,epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high-grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U-Th-Pb isotopes and trace elements by depth-profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high- P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages. [source] Geochronological and petrological constraints on Palaeoproterozoic granulite facies metamorphism in southeastern margin of the North China CratonJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2009Y.-C. LIU Abstract In the southeastern margin of the North China Craton, high-pressure (HP) granulite facies meta-basic rocks exposed as bands or lenses in the Precambrian metamorphic basement (e.g. Bengbu) and as xenoliths in Mesozoic intrusions (e.g. Jiagou) are characterized by the assemblage garnet + clinopyroxene + plagioclase + quartz + rutile ± Ti-rich hornblende. Cathodoluminescence imaging and mineral inclusions reveal that most zircon from the three dated samples displays distinct core-mantle-rim structures. The cores show typical igneous zircon characteristics and give ages of 2.5,2.4 Ga, thus dating the protolith of the metabasites. The mantles formed at granulite facies conditions as evidenced by inclusions of the HP granulite mineral assemblage garnet + clinopyroxene + rutile + plagioclase + quartz ± hornblende and Ti-rich biotite and yield ages of 1839 ± 31, 1811 ± 19 and 1800 ± 15 Ma. An inclusion-free rim yields an age of 176 ± 2 Ma with the lower Th/U ratio of 0.02. The geochronological and preliminary petrological data of this study suggest that the lower crust beneath the southeastern margin of the North China Craton formed at 2.5,2.4 Ga and underwent HP granulite facies metamorphism at c. 1.8 Ga. This HT-HP metamorphic event may be ascribed to large-scale crustal heating and thickening related to mantle-derived magma underplating at the base of the lower crust, as evidenced by widespread extension, rifting and related mafic magma emplacement in the North China Craton during this period. The age of 176 ± 2 Ma most likely records the late amphibolite facies retrogression occurring during exhumation. [source] Contrasting metamorphic histories of lenses of high-pressure rocks and host migmatites with a flat orogenic fabric (Bohemian Massif, Czech Republic): a result of tectonic mixing within horizontal crustal flow?JOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2008TÍPSKÁ Abstract Migmatites with sub-horizontal fabrics at the eastern margin of the Variscan orogenic root in the Bohemian Massif host lenses of eclogite, kyanite-K-feldspar granulite and marble within a matrix of migmatitic paragneiss and amphibolite. Petrological study and pseudosection modelling have been used to establish whether the whole area experienced terrane-wide exhumation of lower orogenic crust, or whether smaller portions of higher-pressure lower crust were combined with a lower-pressure matrix. Kyanite-K-feldspar granulite shows peak conditions of 16.5 kbar and 850 °C with no clear indications of prograde path, whereas in the eclogite the prograde path indicates burial from 10 kbar and 700 °C to a peak of 18 kbar and 800 °C. Two contrasting prograde paths are identified within the host migmatitic paragneiss. The first path is inferred from the presence of staurolite and kyanite inclusions in garnet that contains preserved prograde zoning that indicates burial with simultaneous heating to 11 kbar and 800 °C. The second path is inferred from garnet overgrowths of a flat foliation defined by sillimanite and biotite. Garnet growth in such an assemblage is possible only if the sample is heated at 7,8 kbar to around 700,840 °C. Decompression is associated with strong structural reworking in the flat fabric that involves growth of sillimanite in paragneiss and kyanite-K-feldspar granulite at 7,10 kbar and 750,850 °C. The contrasting prograde metamorphic histories indicate that kilometre-scale portions of high-pressure lower orogenic crust were exhumed to middle crustal levels, dismembered and mixed with a middle crustal migmatite matrix, with the simultaneous development of a flat foliation. The contrasting P,T paths with different pressure peaks show that tectonic models explaining high-pressure boudins in such a fabric cannot be the result of heterogeneous retrogression during ductile rebound of the whole orogenic root. The P,T paths are compatible with a model of heterogeneous vertical extrusion of lower crust into middle crust, followed by sub-horizontal flow. [source] Controls on low-pressure anatexisJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2006C. C. GERBI Abstract Low-pressure anatexis, whereby rocks melt in place after passing through the andalusite stability field, develops under more restricted conditions than does low-pressure metamorphism. Our thermal modelling and review of published work indicate that the following mechanisms, operating alone, may induce anatexis in typical pelitic rocks without inducing wholesale melting in the lower crust: (i) magmatic advection by pervasive flow; (ii) crustal-scale detachment faulting; and (iii) the presence of a high heat-producing layer. Of these, only magmatic advection by pervasive flow and crustal-scale detachment faulting have been shown quantitatively to provide sufficient heat to cause widespread melting. Combinations of the above mechanisms with pluton-scale magmatic advection, shear heating, removal of the lithospheric mantle, or with each other provide additional means of developing suitable high temperatures at shallow crustal levels to generate low-pressure anatexis. [source] Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of Central EuropeJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2006L. TAJ, MANOVá Abstract At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east,west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ,18 kbar at ,850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ,790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ,4 kbar and ,700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9,3.5 mm yr,1 and 7,9.4 °C Myr,1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid. [source] Metamorphic evolution of kyanite,staurolite-bearing epidote,amphibolite from the Early Palaeozoic Oeyama belt, SW JapanJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2004T. Tsujimori Abstract Early Palaeozoic kyanite,staurolite-bearing epidote,amphibolites including foliated epidote,amphibolite (FEA), and nonfoliated leucocratic or melanocratic metagabbros (LMG, MMG), occur in the Fuko Pass metacumulate unit (FPM) of the Oeyama belt, SW Japan. Microtextural relationships and mineral chemistry define three metamorphic stages: relict granulite facies metamorphism (M1), high- P (HP) epidote,amphibolite facies metamorphism (M2), and retrogression (M3). M1 is preserved as relict Al-rich diopside (up to 8.5 wt.% Al2O3) and pseudomorphs after spinel and plagioclase in the MMG, suggesting a medium- P granulite facies condition (0.8,1.3 GPa at >,850 °C). An unusually low-variance M2 assemblage, Hbl + Czo + Ky ± St + Pg + Rt ± Ab ± Crn, occurs in the matrix of all rock types. The presence of relict plagioclase inclusions in M2 kyanite associated with clinozoisite indicates a hydration reaction to form the kyanite-bearing M2 assemblage during cooling. The corundum-bearing phase equilibria constrain a qualitative metamorphic P,T condition of 1.1,1.9 GPa at 550,800 °C for M2. The M2 minerals were locally replaced by M3 margarite, paragonite, plagioclase and/or chlorite. The breakdown of M2 kyanite to produce the M3 assemblage at <,0.5 GPa and 450,500 °C suggests a greenschist facies overprint during decompression. The P,T evolution of the FPM may represent subduction of an oceanic plateau with a granulite facies lower crust and subsequent exhumation in a Pacific-type orogen. [source] Interaction of metamorphism, deformation and exhumation in large convergent orogensJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2002R. A. Jamieson Abstract Coupled thermal-mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (, 450 km) at 1 cm yr,1, and a slope-dependent erosion rate. The model crust is layered with respect to thermal and rheological properties , the upper crust (0,20 km) follows a wet quartzite flow law, with heat production of 2.0 ,W m,3, and the lower crust (20,35 km) follows a modified dry diabase flow law, with heat production of 0.75 ,W m,3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T,600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro-side of the system, and is driven by a depth-dependent pressure gradient that is facilitated by the development of a temperature-dependent low viscosity horizon in the mid-crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post-convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust-related exhumation on the flanks. Velocities in the pro-side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro-side flank of the plateau leads to ,ductile extrusion' of the channel flow zone. The exhumed channel displays apparent normal-sense offset at its upper boundary, reverse-sense offset at its lower boundary, and an ,inverted' metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P,T,t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen. [source] Evolution of Caledonian deformation fabrics under eclogite and amphibolite facies at Vårdalsneset, Western Gneiss Region, NorwayJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2000Engvik The Vårdalsneset eclogite situated in the Western Gneiss Region, SW Norway, is a well preserved tectonite giving information about the deformation regimes active in the lower crust during crustal thickening and subsequent exhumation. The eclogite constitutes layers and lenses variably retrograded to amphibolite and is composed of garnet and omphacite with varying amounts of barroisite, actinolite, clinozoisite, kyanite, quartz, paragonite, phengite and rutile. The rocks record a five-stage evolution connected to Caledonian burial and subsequent exhumation. (1) A prograde evolution through amphibolite facies (T =490±63 °C) is inferred from garnet cores with amphibole inclusions and bell-shaped Mn profile. (2) Formation of L>S-tectonite eclogite (T =680±20 °C, P=16±2 kbar) related to the subduction of continental crust during the Caledonian orogeny. Lack of asymmetrical fabrics and orientation of eclogite facies extensional veins indicate that the deformation regime during formation of the L>S fabric was coaxial. (3) Formation of sub-horizontal eclogite facies foliation in which the finite stretching direction had changed by approximately 90°. Disruption of eclogite lenses and layers between symmetric shear zones characterizes the dominantly coaxial deformation regime of stage 3. Locally occurring mylonitic eclogites (T =690±20 °C, P=15±1.5 kbar) with top-W kinematics may indicate, however, that non-coaxial deformation was also active at eclogite facies conditions. (4) Development of a widespread regional amphibolite facies foliation (T =564±44 °C, P<10.3,8.1 kbar), quartz veins and development of conjugate shear zones indicate that coaxial vertical shortening and sub-horizontal stretching were active during exhumation from eclogite to amphibolite facies conditions. (5) Amphibolite facies mylonites mainly formed under non-coaxial top-W movement are related to large-scale movement on the extensional detachments active during the late-orogenic extension of the Caledonides. The structural and metamorphic evolution of the Vårdalsneset eclogite and related areas support the exhumation model, including an extensional detachment in the upper crust and overall coaxial deformation in the lower crust. [source] Genesis and Mixing/Mingling of Mafic and Felsic Magmas of Back-Arc Granite: Miocene Tsushima Pluton, Southwest JapanRESOURCE GEOLOGY, Issue 1 2009Ki-Cheol Shin Abstract The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc-alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back-arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2,6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065,0.7085) and lower ,Nd(t) (,7.70 to ,4.35) than the MME of basaltic,dacitic composition (0.7044,0.7061 and ,0.53 to ,5.24), whereas most gray granites have intermediate chemical and Sr,Nd isotopic compositions (0.7061,0.7072 and ,3.75 to ,6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr,Nd,Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma,fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back-arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI-like composition, which plays an important role in the genesis of igneous rocks there. [source] Petrochemistry of Volcanic Rocks in the Hishikari Mining Area of Southern Japan, with Implications for the Relative Contribution of Lower Crust and Mantle-derived BasaltRESOURCE GEOLOGY, Issue 4 2003Takahiro Hosono Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene-Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4,1.0 Ma) and Shishimano (1.7,0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction-related arc volcanic rocks. Modal and whole-rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so-called EMI-type Sr-Nd and DUPAL anomaly-like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high-alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component. [source] Temporal-Spatial Structure of Intraplate Uplift in the Qinghai-Tibet PlateauACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010Dewei LI Abstract: The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180,7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180,120 Ma, 65,35 Ma, and 25,7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8,1.2 Ma, 0.9,0.8 Ma and 0.15,0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdisê, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole. [source] The Significance of Crust Structure and Continental Dynamics Inferred from Receiver Functions in West YunnanACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009HE Chuansong Abstract: In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and Vp/Vs ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds,mafic-ultramafic and feldspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the multimodal structure of Ps in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents. [source] |