Lower Bond Strength (lower + bond_strength)

Distribution by Scientific Domains


Selected Abstracts


Comparison of bonding efficacy of an all-in-one adhesive with a self-etching primer system

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2004
Tomoko Abo
The aim of this study was to compare the bonding efficacy of an all-in-one adhesive with that of a self-etching primer system by measuring microleakage after thermocycling and the microtensile bond strength (,TBS) to enamel and dentin. Circular class V cavities along cement,enamel junctions were prepared in 20 extracted human premolars. Each 10 teeth were bonded with either AD Bond (AD) or Clearfil SE Bond (SE), and filled with a resin composite (Charisma). After thermocycling and staining with 0.5% basic fuchsin, the microleakage at the coronal and apical walls was evaluated using longitudinal sections. In addition 20 premolars were used to measure ,TBS at 24 h after bonding for these adhesives to enamel and dentin that corresponded to the coronal and apical walls of the class V cavities. AD showed more microleakage than SE in the coronal walls, but there was less microleakage in the apical walls and no difference in apical leakage between the two adhesives. ,TBS (SD) in MPa to enamel and dentin were 25.2 (7.3) and 68.3 (9.4) for AD, and 35.8 (7.4) and 76.4 (7.8) for SE, respectively. AD gave a lower ,TBS to enamel than did SE. The results suggested that the poor adaptation at the coronal wall in AD might be caused by the lower bond strength to enamel. [source]


Effect of three adhesive primers for a noble metal on the shear bond strengths of three resin cements

JOURNAL OF ORAL REHABILITATION, Issue 1 2001
K. Yoshida
The purpose of this study was to evaluate the durability and shear bond strengths of the different combinations of three adhesive primers and three resin cements to a silver,palladium,copper,gold (Ag,Pd,Cu,Au) alloy. The adhesive primers Alloy Primer® (AP), Metal PrimerII® (MPII) and Metaltite® (MT), and the resin cements BistiteII® (BRII), Panavia Fluoro Cement® (PFC) and Super-Bond C&B® (SB) were used. Two sizes of casting alloy disks were either non-primed or primed and cemented with each of the three resin cements. The specimens were stored in a 37 °C water bath for 24 h and then immersed alternately in 4 and 60 °C water baths for 1 min each for up to 100 000 thermal cycles. Shear mode testing at a crosshead speed of 0·5 mm/min was then performed. The application of MPII or MT was effective for improving the shear bond strength between each of the three resin cements and the Ag,Pd,Cu,Au alloy compared with non-primed specimens. However, when primed with MPII or MT and cemented with SB, the bond strength at 100 000 thermal cycles was significantly lower than that at thermal cycle 0. When primed with AP, the specimens cemented with BRII or PFC showed lower bond strength than non-primed specimens and failed at the metal,resin cement interface at 100 000 thermal cycles. On the other hand, AP was effective in enhancing the shear bond strength of SB to the Ag,Pd,Cu,Au alloy. The five combined uses of an adhesive metal primer and resin cement (combinations of MPII or MT and BRII or PFC and AP and SB) are applicable to the cementation of prosthodontic restorations without complicated surface modification of the noble alloy. [source]


Adhesive bonding of titanium nitride-plated stainless steel for magnetic attachments

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2001
Yohsuke Taira
The purpose of this study was to evaluate adhesive bonding of resin to titanium nitride ion-plated stainless steel in order for magnetic attachments to survive in the oral environment. Two primers, Cesead II Opaque Primer (CPII) and Metal Primer II (MPII), and one bonding agent, Super-Bond C&B (SB), were used. The surfaces of stainless steel disks were ground and then plated with titanium nitride. After the primer and SB resin were applied, a self-curing resin was bonded to the metal surfaces. Shear bond strengths were determined after 24 h of water storage and after 2,000 thermocycles. Titanium nitride ion-plated stainless steel showed bond strength comparable to the non-plated material. After thermocycling, all specimens of the group no primer/no SB were debonded. The bond strengths of groups CPII/no SB, MPII/no SB and no primer/SB were significantly lower bond strengths than groups CPII/SB and MPII/SB. An appropriate combination of primer and bonding agent should be selected when bonding a magnetic attachment to the denture base. [source]


Bond strengths between composite resin and auto cure glass ionomer cement using the co-cure technique

AUSTRALIAN DENTAL JOURNAL, Issue 2 2006
GM Knight
Abstract Background: The clinical technique for sandwich restorations prescribes etching initially set auto cure glass ionomer cement (GIC) prior to placing a layer of resin bond to develop a weak mechanical bond between composite resin and GIC. Co-curing a resin modified glass ionomer cement (RMGIC) bond and composite resin to GIC may create a chemical bond and improve the bond strengths between these two materials. Methods: A total of 48 specimens were prepared, 12 in each of four categories. Capsulated GIC was placed into a mould and allowed to set for four minutes, etched for five seconds followed by placement of a resin bond and photo cured for five seconds over which a composite resin was puddled onto the resin bond and photo cured for 10 seconds. Capsulated GIC was placed into a mould and allowed to set for four minutes after which a sample of RMGIC (Riva LC) was prepared using twice the liquid powder ratio and painted over the surface of the set GIC using a micro brush. An increment of composite resin was added over the RMGIC and both materials were photo co-cured for 10 seconds. Capsulated GIC was placed into a mould and RMGIC (Riva LC) that had been prepared using twice the liquid powder was brushed over the GIC (prior to initial set) followed by the placement of a layer of composite resin and photo co-cured for 10 seconds. Capsulated GIC was placed into a mould and RMGIC (Fuji II LC) that had been prepared using twice the liquid powder was brushed over the GIC (prior to initial set) followed by the placement of a layer of composite resin and photo co-cured for 10 seconds. Shear testing of each of the samples was carried out and specimens were examined to determine the nature of the fracture. Selected samples were prepared for SEM investigation to observe the interfaces between the GIC and composite resin. Results: There were significantly lower bond strengths (P < 0.05) amongst samples that had been etched and bonded (2.42MPa) compared to the other samples that had been co-cure bonded with RMGIC (6.48,7.05MPa). There were no significant differences amongst the bond strengths of the samples co-cure bonded with RMGIC. Specimens prepared by the ,etch and bond' technique failed adhesively and co-cured specimens failed cohesively within the GIC. SEM investigation showed chemical bonds between RMGIC bond and GIC and composite resin. Conclusions: The co-cured RMGIC bonding system eliminates several placement steps and produces a significantly stronger chemical bond between GIC and composite resin than the ,etch and bond' technique. RMGIC bond and composite resin may be co-cured to GIC either before or after initial set has occurred. [source]