Low-diversity Ecosystem (low-diversity + ecosystem)

Distribution by Scientific Domains


Selected Abstracts


Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem

GLOBAL CHANGE BIOLOGY, Issue 8 2008
J. E. BARRETT
Abstract Low-diversity ecosystems cover large portions of the Earth's land surface, yet studies of climate change on ecosystem functioning typically focus on temperate ecosystems, where diversity is high and the effects of individual species on ecosystem functioning are difficult to determine. We show that a climate-induced decline of an invertebrate species in a low-diversity ecosystem could contribute to significant changes in carbon (C) cycling. Recent climate variability in the McMurdo Dry Valleys of Antarctica is associated with changes in hydrology, biological productivity, and community composition of terrestrial and aquatic ecosystems. One of the greatest changes documented in the dry valleys is a 65% decrease in the abundance of the dominant soil invertebrate (Scottnema lindsayae, Nematoda) between 1993 and 2005, illustrating sensitivity of biota in this ecosystem to small changes in temperature. Globally, such declines are expected to have significant influences over ecosystem processes such as C cycling. To determine the implications of this climate-induced decline in nematode abundance on soil C cycling we followed the fate of a 13C tracer added to soils in Taylor Valley, Antarctica. Carbon assimilation by the dry valley nematode community contributed significantly to soil C cycling (2,7% of the heterotrophic C flux). Thus, the influence of a climate-induced decline in abundance of a dominant species may have a significant effect on ecosystem functioning in a low-diversity ecosystem. [source]


Chemical amplification in an invaded food web: Seasonality and ontogeny in a high-biomass, low-diversity ecosystem,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2008
Carla A. Ng
Abstract The global spread of invasive species is changing the structure of aquatic food webs worldwide. The North American Great Lakes have proved particularly vulnerable to this threat. In nearshore areas, invasive benthic species such as dreissenid mussels and round gobies (Neogobius melanostomus) have gained dominance in recent years. Such species are driving the flow of energy and material from the water column to the benthic zone, with dramatic effect on nutrient and contaminant cycling. Here, we develop a stage-structured model of a benthified food web in Lake Michigan with seasonal resolution and show how its bioaccumulation patterns differ from expected ones. Our model suggests that contaminant recycling through the consumption of lipid-rich fish eggs and mussel detritus is responsible for these differences. In southern Lake Michigan's Calumet Harbor (Chicago, IL, USA), round gobies have nitrogen isotope signatures with considerable spread, with some values higher than their predators and others lower than their prey. Contrary to patterns observed in linear pelagic systems, we predict that polychlorinated biphenyl (PCB) concentrations in these fish decrease with increasing size due to the lipid- and benthos-enriched diets of smaller fish. We also present here round goby PCB concentrations measured in 2005 after an invasional succession in Calumet Harbor and demonstrate how the change from one invasive mussel species to another may have led to a decrease in round goby PCB accumulation. Our results suggest that benthic-dominated systems differ from pelagic ones chiefly due to the influence of detritus and that these effects are exacerbated in systems with low species diversity and high biomass. [source]


Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem

GLOBAL CHANGE BIOLOGY, Issue 8 2008
J. E. BARRETT
Abstract Low-diversity ecosystems cover large portions of the Earth's land surface, yet studies of climate change on ecosystem functioning typically focus on temperate ecosystems, where diversity is high and the effects of individual species on ecosystem functioning are difficult to determine. We show that a climate-induced decline of an invertebrate species in a low-diversity ecosystem could contribute to significant changes in carbon (C) cycling. Recent climate variability in the McMurdo Dry Valleys of Antarctica is associated with changes in hydrology, biological productivity, and community composition of terrestrial and aquatic ecosystems. One of the greatest changes documented in the dry valleys is a 65% decrease in the abundance of the dominant soil invertebrate (Scottnema lindsayae, Nematoda) between 1993 and 2005, illustrating sensitivity of biota in this ecosystem to small changes in temperature. Globally, such declines are expected to have significant influences over ecosystem processes such as C cycling. To determine the implications of this climate-induced decline in nematode abundance on soil C cycling we followed the fate of a 13C tracer added to soils in Taylor Valley, Antarctica. Carbon assimilation by the dry valley nematode community contributed significantly to soil C cycling (2,7% of the heterotrophic C flux). Thus, the influence of a climate-induced decline in abundance of a dominant species may have a significant effect on ecosystem functioning in a low-diversity ecosystem. [source]


Consumer Control of Salt Marshes Driven by Human Disturbance

CONSERVATION BIOLOGY, Issue 3 2008
MARK D. BERTNESS
control de consumidor; impactos humanos; conservación de pantano de sal; cascadas de trophic Abstract:,Salt marsh ecosystems are widely considered to be controlled exclusively by bottom,up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top,down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom,up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom,up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes. Resumen:,Se ha considerado extensamente que los ecosistemas de marismas son controlados exclusivamente por dinámicas abajo-arriba, pero se ha acumulado evidencia de que las perturbaciones humanas están provocando el control por consumidores en marismas del Atlántico occidental, a menudo con consecuencias catastróficas. En otros ecosistemas marinos, las perturbaciones humanas rutinariamente disminuyen (e.g., arrecifes de coral, pastos marinos) y refuerzan (e.g., varec) el control por consumidores, pero la teoría de marismas actual predice una leve interacción potencial entre humanos y consumidores en las marismas. Por lo tanto, las modificaciones humanas al control arriba-abajo en las marismas no estaba anticipada y aun era descontada en la teoría de marismas actual, a pesar de advertencias sobre el potencial de impactos humanos en cascada en trabajos en otros ecosistemas marinos. No obstante los experimentos recientes que han desafiado el dogma de marismas establecido y que han demostrado la desaparición gradual de marismas conducida por consumidores, las agencias gubernamentales y las organizaciones no gubernamentales continúan manejando la disminución de marismas en el marco de la teoría vieja y sólo consideran como agentes causales a factores abajo-arriba. Esta dependencia intelectual en la teoría sistema-específico (i.e., teoría de marismas abajo-arriba) de muchos ecólogos y manejadores costeros tiene el potencial de tener repercusiones graves para el manejo y conservación de ecosistemas costeros frente a las crecientes amenazas humanas. Enfatizamos que las comunidades plantas vasculares marinas (marismas, pastos marinos, manglares) son potencialmente más vulnerables al pastoreo descontrolado y al colapso conducido por consumidores que lo que reconoce la teoría actualmente, particularmente en ecosistemas con baja diversidad como las marismas del Atlántico. [source]