Home About us Contact | |||
Low Velocity (low + velocity)
Selected AbstractsThe linkage between velocity patterns and sediment entrainment in a forced-pool and riffle unitEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2009D. M. Thompson Abstract A field-based project was initiated in order to characterize velocities and sediment entrainment in a forced-pool and riffle sequence. Three-dimensional velocities and turbulence intensities were measured with an acoustic Doppler velocimeter at 222 different points at three similar flows that averaged approximately 4·35 m3 s,1 within a large pool,riffle unit on North Saint Vrain Creek, Colorado. Sediment-sorting patterns were observed with the introduction of 500 tracer particles painted according to initial seeding location. Tracer particles moved sporadically during a 113 day period in response to the annual snowmelt peak flow, which reached a maximum level of 14·8 m3 s,1. Velocity data indicate high instantaneous velocities and turbulence levels in the centre of pools. Patterns of sediment deposition support the notion that stream competence is higher in the pool than the downstream riffle. Flow convergence around a large channel constriction appears to play a major role in multiple processes that include helical flow development and sediment routing, and backwater development with low velocities and turbulence levels above the constriction that may locally limit sediment supply. Jet flow, flow separation, vortex scour and turbulence generation enhance scour in the centre of pools. Ultimately, multiple processes appear to play some role in maintenance of this forced pool and the associated riffle. Copyright © 2008 John Wiley & Sons, Ltd. [source] Synchrony between growth and reproductive patterns in human females: Early investment in growth among Pumé foragersAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010Karen L. Kramer Abstract Life history is an important framework for understanding many aspects of ontogeny and reproduction relative to fitness outcomes. Because growth is a key influence on the timing of reproductive maturity and age at first birth is a critical demographic variable predicting lifetime fertility, it raises questions about the synchrony of growth and reproductive strategies. Among the Pumé, a group of South American foragers, young women give birth to their first child on average at age 15.5. Previous research showed that this early age at first birth maximizes surviving fertility under conditions of high infant mortality. In this study we evaluate Pumé growth data to test the expectation that if early reproduction is advantageous, then girls should have a developmental trajectory that best prepares them for young childbearing. Analyses show that comparatively Pumé girls invest in skeletal growth early, enter puberty having achieved a greater proportion of adult body size and grow at low velocities during adolescence. For early reproducers growing up in a food-limited environment, a precocious investment in growth is advantageous because juveniles have no chance of pregnancy and it occurs before the onset of the competing metabolic demands of final reproductive maturation and childbearing. Documenting growth patterns under preindustrial energetic and demographic conditions expands the range of developmental variation not otherwise captured by normative growth standards and contributes to research on human phenotypic plasticity in diverse environments. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source] Anomalous friction in slurry flowsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2000Jason Schaan Abstract Experiments conducted with water slurries of 1 mm particles of specific gravity 1.59 in a laboratory pipeline 0.105 m in diameter have provided evidence of a change in the friction mechanism at velocities above 3 m/s. These flows were stratified and at low velocities the frictional pressure gradients were in satisfactory agreement with the predictions of the conventional two-layer model. However at higher velocities the friction is substantially lower than predicted. Measurements of concentration and velocity distributions within the pipe show that no major change in flow regime occurs concurrently with the change in the friction mechanism. It appears that the effect is due to a change in the nature of the particle-wall interaction, of a type which suggests that an inward-acting force affects the particles adjacent to the wall. Des expériences menées avec des suspensions aqueuses de particules de 1 mm d'une densité de 1,59 dans un pipeline de laboratoire de 0,105 m de diamètre ont permis d'illustrer un changement dans le mécanisme de frottement à des vitesses superieures à 3 m/s. Ces écoulements sont stratifiés, et à de faibles vitesses, les gradients de pression de frottement montrent un accord satisfaisant avec les prédictions du modèle à deux couches classiques. Toutefois, à de plus grandes vitesses, le frottement est substantiellement plus faible que prédit. Des mesures de distributions de concentrations et de vitesses dans la conduite montrent qu'aucun changement majeur n'est survenu dans le régime d'écoulement simultanément au changement dans le mécanisme de frottement. II apparaît que l'effet est dû à un changement de la nature de l'interaction particules-paroi, d'une façon qui laisse supposer qu'une force agissant de I'intérieur influe sur les particules adjacentes à la paroi. [source] Characterization of the Vestibulo-Ocular Reflex Evoked by High-Velocity MovementsTHE LARYNGOSCOPE, Issue 7 2004François D. Roy HBSc Abstract Objectives/Hypothesis: The horizontal angular vestibulo-ocular reflex (VOR) plays an important role in stabilizing images on the retina throughout head rotations. Current evidence suggests that the VOR behaves linearly at low velocities and nonlinearly at high velocities. The aim of the research was to evaluate and characterize the normal behavior of the reflex evoked by high-velocity head rotations. Study Design: Case control study. Methods: Manually applied head-thrust movements with peak velocities in the range of 100° to 500°/s and peak accelerations up to 7,000°/s 2 were performed on normal volunteers. These head thrusts were comparable with those described in detail by Halmagi and coworkers. Eye and head movements were recorded using the magnetic search coil method. Results: The gain of the VOR is linear at low velocities and saturates at head velocities greater than 350°/s. The values for the normal gain of the reflex were approximated by means of the area between two nonlinear functions. The directional difference parameter, exploring the symmetry of the reflex, indicated that the VOR in normal subjects is symmetric. Conclusion: The gain of the VOR in individuals with intact vestibular function is nonlinear at high angular head velocities. We propose a quantitative means using two nonlinear functions to characterize the normal range of values for the gain of the VOR in individuals with normal vestibular function. A directional difference parameter used in conjunction with the normal range of gains can detect small differences in the symmetry of the VOR and, consequently, reveal unilateral vestibular loss. [source] Measuring kinaesthetic sensitivity in typically developing childrenDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 9 2009KRISTEN PICKETT MS This study presents a method to quantify a child's sensitivity to passive limb motion, which is an important aspect of kinaesthesia not easily examined clinically. Psychophysical detection thresholds to passive forearm motion were determined in a group of 20 typically developing pre-adolescent children (mean age 12y 6mo, SD 10mo, range 11,13y) and a group of 10 healthy adults (mean age 29y 10mo, SD 10y 7mo, range 18,50y). A newly designed passive motion apparatus was used to measure the time to detection of forearm motion and the errors in determining movement direction. Results showed that limb motion sensitivity became increasingly variable below 0.3°/s in children and adults. In comparison with adults, movement detection times in the pediatric group were increased by between 4% and 108% for the range of tested velocities (0.075,1.35°/s). At 0.075°/s, 5% of the children, but 50% of the adults, made no directional error, indicating that motion perception became unreliable at such low velocity in both groups. The findings demonstrate that sensitivity to passive forearm motion in children should be tested at a range between 0.075 and 0.3°/s. They further suggest that passive motion sensitivity may not be fully developed in pre-adolescent children. [source] Design of an Ultrasound Contrast Agent for Myocardial PerfusionECHOCARDIOGRAPHY, Issue 2000Michel Schneider Ph.D. Myocardial contrast echography (MCE) has been a major research objective in cardiovascular ultrasound for almost two decades. The design of a contrast agent fulfilling the needs of MCE requires taking into consideration a number of points: a basic decision has to be made whether a deposit agent or a free-flowing agent would be more appropriate and whether an agent active at low/medium mechanical index (MI) is preferable to an agent active only at high MI; only a small percentage of the cardiac output enters the coronary microcirculation, which means that highly sensitive bubble detection methods, such as harmonic imaging or pulse inversion, are needed; the low velocity of blood in the microcirculation that leads to extensive bubble destruction during imaging means that intermittent imaging and/or an agent active at low MI is (are) required; the duration of the contrast effect must be sufficient to allow a complete examination and is affected by the rate of contrast administration; the performance of the contrast agent should not be equipment-dependent. The ultimate goal in MCE is to be able to quantify blood flow in the various segments to determine if adequate oxygenation is achieved. Ultrasound-mediated bubble destruction followed by the measurement of bubble replenishment kinetics opens new perspectives for quantification. SonoVue is a free-flowing ultrasound contrast agent made of sulphur hexafluoride microbubbles stabilized by a highly elastic phospholipid monolayer. SonoVue is able to produce myocardial opacification at a wide range of acoustic pressures and in particular at Mis as low as 0.1. Its performance is not equipment-dependent. Good results for myocardial opacification have been observed in all animal species tested (dogs, minipigs, rabbits), using continuous as well as intermittent imaging. Trials are in progress to demonstrate the clinical utility of SonoVue for rest and stress perfusion studies, in particular for the diagnosis of CAD, the detection of myocardial infarction, the assessment of the success of interventions and myocardial viability, and the detection of hibernating myocardium. [source] Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratiosINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2004M. A. Habib Abstract Erosion predictions in a pipe with abrupt contraction of different contraction ratios for the special case of two-phase (liquid and solid) turbulent flow with low particle concentration are presented. A mathematical model based on the time-averaged governing equations of 2-D axi-symmetric turbulent flow is used for the calculations of the fluid velocity field (continuous phase). The particle-tracking model of the solid particles is based on the solution of the governing equation of each particle motion taking into consideration the effect of particle rebound behaviour. Models of erosion were used to predict the erosion rate in mg/g. The effect of Reynolds number and flow direction with respect to the gravity was investigated for three contraction geometries considering water flow in a carbon steel pipe. The results show that the influence of the contraction ratio on local erosion is very significant. However, this influence becomes insignificant when the average erosion rates over the sudden contraction area are considered. The results also indicate the significant influence of inlet velocity variations. The influence of buoyancy is significant for the cases of low velocity of the continuous flow. A threshold velocity below which erosion may be neglected was indicated. Copyright © 2004 John Wiley & Sons, Ltd. [source] Color and power Doppler sonography of extracranial and intracranial arteries in moyamoya diseaseJOURNAL OF CLINICAL ULTRASOUND, Issue 2 2006Li-Tao Ruan MD Abstract Purpose: To study the hemodynamic characteristics of moyamoya disease with color Doppler (CD) and power Doppler (PD) sonography. Methods: The hemodynamic parameters of intracranial and extracranial arteries from 17 patients with moyamoya disease confirmed via digital subtraction angiography and 30 healthy controls were studied with conventional and transcranial CD and PD. Results: The moyamoya vessels were detected as scattered color Doppler signal with low velocity and a low resistance index (RI) at the base of the brain in 10 of the 17 patients. The RI of the common carotid arteries and the internal carotid arteries of the patients was significantly higher, whereas the peak velocity was lower than in controls. The posterior carotid arteries were more frequently involved in children (43.8%) than in adults (5.6%). Conclusions: Transcranial CD and PD can be used to demonstrate the stenosis and occlusion of intracranial arteries and the abnormal vascular network at the base of the brain in most cases. Combined with the hemodynamic characteristics of extracranial arteries and the symptoms of the patients, an accurate diagnosis of moyamoya disease could be made in the majority of cases using PD. © 2006 Wiley Periodicals, Inc. J Clin Ultrasound 34:60,69, 2006 [source] Transient fluidization and segregation of binary mixtures of particlesAICHE JOURNAL, Issue 11 2000A. Marzocchella Fluidization of binary mixtures of particles belonging to group B of the Geldart classification of powders was studied. Beds tested were prepared by mixing in different proportions particles with almost equal density (,2,500 kg/m3) and dissimilar size (125 ,m silica sand and 500 ,m glass beads). Experiments were carried out using a segmented fluidization column equipped with multiple pressure transducers. Experimental procedures included continuous monitoring of pressure drop at different locations along the bed during quasi-steady or stepwise changes of gas superficial velocity, and characterization of particle-size distributions in each segment of the fluidization column after fluidization of the bed for given times. Three ranges of gas superficial velocity were recognized for each solids mixture. At low velocity the bed behaves as a fixed bed. At high velocity, it is fully and steadily fluidized. In an intermediate velocity range, transient fluidization takes place: an initially uniform fluidized bed eventually undergoes segregation, giving rise to a defluidized bottom layer rich in the coarser solids and to a "supernatant" fluidized layer where finer particles prevail. The thresholds between these velocity ranges are rather sharp and were characterized as functions of initial bed composition. Rates at which the defluidized solids layer builds up from initially uniform beds, and the ultimate compositions of the defluidized bottom and fluidized top layers are characterized for beds with different compositions at variable gas superficial velocity. [source] A Separate Role for ICAM-1 and Fluid Shear in Regulating Leukocyte Interactions with Straight Regions of Venular Wall and Venular ConvergencesMICROCIRCULATION, Issue 6 2009RONEN SUMAGIN ABSTRACT Objective: Variation in expression of adhesion molecules plays a key role in regulating leukocyte behavior, but the contribution of fluid shear to these interactions cannot be ignored. Here, we dissected the effects of each of these factors on leukocyte behavior in different venular regions. Materials and Methods: Leukocyte behavior was quantified in blood-perfused microvascular networks in anesthetized mouse cremaster muscle, using intravital confocal microscopy. ICAM-1 expression and fluid shear rate were quantified by using ICAM-1 fluorescent labeling, fluorescent particle tracking, and computational fluid dynamics. Results: Tumor necrosis factor alpha induced an increase in ICAM-1 expression and abolished the differences observed among control venules of different sizes. Consequently, leukocyte adhesion was increased to a similar level across all vessel sizes [5.1±0.46 leukocytes/100 ,m vs. 2.1±0.47 (control)], but remained significantly higher in venular convergences (7.8±0.4). Leukocyte transmigration occurred primarily in the smallest venules and venular convergences (23.9±5.1 and 31.9±2.7 leukocytes/10,000 ,m2 tissue, respectively). In venular convergences, the two inlet vessels are predicted to create a region of low velocity, increasing leukocyte adhesion probability. Conclusions: In straight regions of different-sized venules, the variability in ICAM-1 expression accounts for the differences in leukocyte behavior; in converging regions, fluid shear potentially has a greater effect on leukocyte endothelial cell interactions. [source] Damage evolution in low velocity impacted unreinforced vinyl ester 411-350 and 411-C50 resin systemsPOLYMER COMPOSITES, Issue 6 2000M. Motuku Assistant Professor Damage evolution in plaques made of vinyl ester resin systems was investigated as a function of specimen thickness, impact energy level and matrix material. Dow DERAKANE vinyl ester 411-350 and 411-C50 resin systems, which have low viscosity and are ideally suited for low-cost liquid processing techniques like vacuum assisted resin transfer molding (VARTM), were considered for the low velocity instrumented impact testing. Characterization of damage evolution was undertaken using optical microscopy and analysis of impact load histories recorded during the impact event. Radial cracking, perforations at the point of impact (in the form of a truncated cone), and damage resulting from the support constraints were identified as the dominant failure characteristics in both resin systems. Radial cracking, which originated from the bottom surface, was operative in all failed specimens and was attributed to the catastrophic failure due to extensive flexural tensile strength losses. For specimens that could deflect significantly, radial cracking and support-constraint-induced damage were the operative failure mechanisms. Radial cracking and through-thickness shearing led to failure in stiffer plaques. The DERAKANE 411-350-vinyl ester resin system was found more damage resistant than the 411-C50 system. [source] Combined seismic tomographic and ultrashallow seismic reflection study of an Early Dynastic mastaba, Saqqara, EgyptARCHAEOLOGICAL PROSPECTION, Issue 4 2005Mohamed Metwaly Abstract Mastabas were large rectangular structures built for the funerals and burials of the earliest Pharaohs. One such mastaba was the basic building block that led to the first known stone pyramid, the,>4600-year old Step Pyramid within the Saqqara necropolis of Egypt. We have tested a number of shallow geophysical techniques for investigating in a non-invasive manner the subsurface beneath a large Early Dynastic mastaba located close to the Step Pyramid. After discovering that near-surface sedimentary rocks with unusually high electrical conductivities precluded the use of the ground-penetrating radar method, a very high-resolution seismic data set was collected along a profile that extended the 42.5,m length of the mastaba. A sledgehammer source was used every 0.2,m and the data were recorded using a 48-channel array of single geophones spaced at 0.2,m intervals. Inversions of the direct- and refracted-wave travel times provided P-wave velocity tomograms of the shallow subsurface, whereas relatively standard processing techniques yielded a high-fold (50,80) ultrashallow seismic reflection section. The tomographic and reflection images were jointly interpreted in terms of loose sand and friable limestone layers with low P-wave velocities of 150,650,m,s,1 overlying consolidated limestone and shale with velocities,>,1500,m,s,1. The sharp contact between the low- and high-velocity regimes was approximately horizontal at a depth of ca. 2,m. This contact was the source of a strong seismic reflection. Above this contact, the velocity tomogram revealed moderately high velocities at the surface location of a friable limestone outcrop and two low-velocity blocks that probably outlined sand-filled shafts. Below the contact, three regularly spaced low velocity blocks probably represented tunnels and/or subsurface chambers. Copyright © 2005 John Wiley & Sons, Ltd. [source] Study of liquid droplets impact on dry inclined surfaceASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009Jie Cui Abstract The impact of droplets on the surface is a common phenomenon. The outcome of a droplet impacting on a solid surface depends on the properties of the liquid, the surface conditions and the kinematics parameters, i.e. velocity and momentum. During the impact process, the phenomenons, such as spread, rebound, often appear. This paper presents the results of an experimental investigation of droplets impacting on inclined solid surface at low velocity. The effects of the impact parameters on the droplet impingement are studied. Measures were performed using a high-speed camera. It has been shown that the impacting droplets spread on the surface until liquid surface tension and viscosity overcame inertial forces, after which they recoiled off the surface. The maximum diameter of a droplet spread was measured. In addition, a further forecasting expression has been obtained through energy model when a droplet impacts on an inclined surface without splashing. It is found that it is in good agreement with experimental value and can well predict the maximum spread diameter. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Seismogenic Structure around the Epicenter of the May 12, 2008 Wenchuan Earthquake from Micro-seismic TomographyACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009Meijian AN Abstract: A three-dimensional local-scale P -velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of ,2 km. The high-resolution P -velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least ,10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu-Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respe tively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a ,7 km offset with ,5 km vertical component. [source] |