Low Tidal Volume (low + tidal_volume)

Distribution by Scientific Domains


Selected Abstracts


Automated pre-ejection period variation predicts fluid responsiveness in low tidal volume ventilated pigs

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 2 2010
S. T. VISTISEN
Introduction: The respiratory variation in the pre-ejection period (,PEP) has been used to predict fluid responsiveness in mechanically ventilated patients. Recently, we automated this parameter and indexed it to tidal volume (PEPV) and showed that it was a reliable predictor for post-cardiac surgery, mainly paced, patients ventilated with low tidal volumes. The aims of the present animal study were to investigate PEPV's ability to predict fluid responsiveness under different fluid loading conditions and natural heart rates during low tidal volume ventilation (6 ml/kg) and to compare the performance of PEPV with other markers of fluid responsiveness. Methods: Eight prone, anesthetized piglets (23,27 kg) ventilated with tidal volumes of 6 ml/kg were subjected to a sequence of 25% hypovolemia, normovolemia, and 25% and 50% hypervolemia. PEPV, ,PEP, pulse pressure variation (PPV), central venous pressure (CVP), and pulmonary artery occlusion pressure (PAOP) were measured before each volume expansion. Results: Sensitivity was 89% and specificity was 93% for PEPV, 78% and 93% for ,PEP, 89% and 100% for PPV, 78% and 93% for CVP, and 89% and 87% for PAOP. Conclusion: PEPV predicts fluid responsiveness in low tidal volume ventilated piglets. [source]


Automated pre-ejection period variation indexed to tidal volume predicts fluid responsiveness after cardiac surgery

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2009
S. T. VISTISEN
Background: Reliable continuous monitoring of fluid responsiveness is an unsolved issue in patients ventilated with low tidal volume. We hypothesised that variations in the pre-ejection period (PEP) defined as the time interval between electrocardiogram (ECG) R-wave and onset of systolic upstroke in arterial blood pressure could reliably predict fluid responsiveness in patients ventilated with moderately low tidal volume. Furthermore, we hypothesised that indexing dynamic parameters to tidal volume would improve their prediction. The aim was to refine and automate a previously suggested algorithm for PEP variation (,PEP) and to test this new parameter indexed to tidal volume (PEPV), as a marker of fluid responsiveness along with central venous pressure (CVP), pulse pressure variation (PPV) and ,PEP. Additionally, the aim was to evaluate the concept of indexing dynamic parameters to tidal volume. Methods: Arterial pressure, CVP, ECG and cardiac index (CI) were acquired from 23 mechanically ventilated post-cardiac surgery patients scheduled for volume expansion. PEPV, PPV and ,PEP were extracted. Results: Using responder/non-responder classification (response=change in CI>+15%), sensitivity and specificity were 100% and 83%, respectively, for PEPV, 94% and 83% for ,PEP, and 94% and 83% for PPV. CVP offered no relevant information. Tidal volume indexing improved sensitivity for ,PEP to 100%. Conclusion: In this study in post-cardiac surgery patients, a refined parameter, PEPV, predicted fluid responsiveness better than PPV and ,PEP. Our results suggest that dynamic parameters using variations in PEP should be indexed to tidal volume. [source]


Suggested Strategies for Ventilatory Management of Veterinary Patients with Acute Respiratory Distress Syndrome

JOURNAL OF VETERINARY EMERGENCY AND CRITICAL CARE, Issue 3 2001
Erika R. Mueller DVM
Abstract Objective: To review the current recommendations and guidelines for mechanical ventilation in humans and in animals with acute respiratory distress syndrome. Human data synthesis: Acute respiratory distress syndrome (ARDS) in humans in defined as an acute onset of bilateral, diffuse infiltrates on thoracic radiographs that are not the result of heart disease and a significant oxygenation impairment. These patients require mechanical ventilation. Research has shown that further pulmonary damage can occur as a result of mechanical ventilation. Various alveolar recruitment maneuvers and a low tidal volume with increased positive end expiratory pressure (PEEP) have been associated with an increased survival. Veterinary dat synthesis: Two veterinary reports have characterized ARDS in dogs using human criteria. There are no prospective veterinary studies using recruitment that ventilator-induced lung injury (VILI) occurs in dogs, sheep, and rats. Conclusion: Recruitment maneuvers in conjunction with low tidal volumes and PEEP keep the alveoli open for gas exchange and decrease VILI. Prospective veterinary research in needed to determine if these maneuvers and recommendation can be applied to veterinary patients. [source]


Pumpless extracorporeal removal of carbon dioxide combined with ventilation using low tidal volume and high positive end-expiratory pressure in a patient with severe acute respiratory distress syndrome

ANAESTHESIA, Issue 2 2009
T. Bein
Summary The effects of the combination of a ,lowest' lung ventilation with extracorporeal elimination of carbon dioxide by interventional lung assist are described in a patient presenting with severe acute respiratory distress syndrome due to fulminant pneumonia. Reducing tidal volume to 3 ml.kg,1 together with interventional lung assist resulted in a decrease in severe hypercapnia without alveolar collapse or hypoxaemia but with a decrease in serum levels of interleukin-6. This approach was applied for 12 days with recovery of the patient, without complications. Extracorporeal removal of carbon dioxide by interventional lung assist may be a useful tool to enable ,ultraprotective' ventilation in severe acute respiratory distress syndrome. [source]


Automated pre-ejection period variation predicts fluid responsiveness in low tidal volume ventilated pigs

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 2 2010
S. T. VISTISEN
Introduction: The respiratory variation in the pre-ejection period (,PEP) has been used to predict fluid responsiveness in mechanically ventilated patients. Recently, we automated this parameter and indexed it to tidal volume (PEPV) and showed that it was a reliable predictor for post-cardiac surgery, mainly paced, patients ventilated with low tidal volumes. The aims of the present animal study were to investigate PEPV's ability to predict fluid responsiveness under different fluid loading conditions and natural heart rates during low tidal volume ventilation (6 ml/kg) and to compare the performance of PEPV with other markers of fluid responsiveness. Methods: Eight prone, anesthetized piglets (23,27 kg) ventilated with tidal volumes of 6 ml/kg were subjected to a sequence of 25% hypovolemia, normovolemia, and 25% and 50% hypervolemia. PEPV, ,PEP, pulse pressure variation (PPV), central venous pressure (CVP), and pulmonary artery occlusion pressure (PAOP) were measured before each volume expansion. Results: Sensitivity was 89% and specificity was 93% for PEPV, 78% and 93% for ,PEP, 89% and 100% for PPV, 78% and 93% for CVP, and 89% and 87% for PAOP. Conclusion: PEPV predicts fluid responsiveness in low tidal volume ventilated piglets. [source]


Suggested Strategies for Ventilatory Management of Veterinary Patients with Acute Respiratory Distress Syndrome

JOURNAL OF VETERINARY EMERGENCY AND CRITICAL CARE, Issue 3 2001
Erika R. Mueller DVM
Abstract Objective: To review the current recommendations and guidelines for mechanical ventilation in humans and in animals with acute respiratory distress syndrome. Human data synthesis: Acute respiratory distress syndrome (ARDS) in humans in defined as an acute onset of bilateral, diffuse infiltrates on thoracic radiographs that are not the result of heart disease and a significant oxygenation impairment. These patients require mechanical ventilation. Research has shown that further pulmonary damage can occur as a result of mechanical ventilation. Various alveolar recruitment maneuvers and a low tidal volume with increased positive end expiratory pressure (PEEP) have been associated with an increased survival. Veterinary dat synthesis: Two veterinary reports have characterized ARDS in dogs using human criteria. There are no prospective veterinary studies using recruitment that ventilator-induced lung injury (VILI) occurs in dogs, sheep, and rats. Conclusion: Recruitment maneuvers in conjunction with low tidal volumes and PEEP keep the alveoli open for gas exchange and decrease VILI. Prospective veterinary research in needed to determine if these maneuvers and recommendation can be applied to veterinary patients. [source]