Low Surface Energy (low + surface_energy)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science


Selected Abstracts


A Novel ABC Triblock Copolymer with Very Low Surface Energy: Poly(dimethylsiloxane)- block -Poly(methyl methacrylate)- block -Poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate)

MACROMOLECULAR REACTION ENGINEERING, Issue 5 2008
Zhenghong Luo
Abstract Poly(dimethylsiloxane)- block -poly(methyl methacrylate)- block -poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) was successfully synthesized via ATRP. The chemical composition and structure of the copolymer was characterized by NMR and FT-IR spectroscopy and molecular weight measurement. Gel permeation chromatography was used to study the molecular weight distribution of the triblock copolymer. The surface properties of the resulting copolymer were investigated. The effects of fluorine content and bulk structure on surface energy were investigated by static water contact angle measurements. Surface composition was studied by XPS. [source]


Siloxane Copolymers for Nanoimprint Lithography,

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2007
P. Choi
Abstract Presented here is the novel use of thermoplastic siloxane copolymers as nanoimprint lithography (NIL) resists for 60,nm features. Two of the most critical steps of NIL are mold release and pattern transfer through dry etching. These require that the NIL resist have low surface energy and excellent dry-etching resistance. Homopolymers traditionally used in NIL, such as polystyrene (PS) or poly(methyl methacrylate) (PMMA), generally cannot satisfy all these requirements as they exhibit polymer fracture and delamination during mold release and have poor etch resistance. A number of siloxane copolymers have been investigated for use as NIL resists, including poly(dimethylsiloxane)- block -polystyrene (PDMS- b -PS), poly(dimethylsiloxane)- graft -poly(methyl acrylate)- co -poly(isobornyl acrylate) (PDMS- g -PMA- co -PIA), and PDMS- g -PMMA. The presence of PDMS imparts the materials with many properties that are favorable for NIL, including low surface energy for easy mold release and high silicon content for chemical-etch resistance,in particular, extremely low etch rates (comparable to PDMS) in oxygen plasma, to which organic polymers are quite susceptible. These properties give improved NIL results. [source]


Antiadhesion Surface Treatments of Molds for High-Resolution Unconventional Lithography,

ADVANCED MATERIALS, Issue 23 2006
J. Lee
A new strategy to achieve antiadhesion surface coatings is introduced. The approach, which uses molds coated in a thin film of poly(dimethylsiloxane) (PDMS, see figure) to achieve the antiadhesive surfaces, is applicable to virtually any type of mold material due to the use of silane chemistry and the low surface energy of PDMS. This allows simple and rapid replication of high complexity, high-aspect-ratio nanostructures with excellent replication fidelity. [source]


Synthesis of Polyurethane/Poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) Particles in Supercritical Carbon Dioxide

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 5 2008
Benjamin Renault
Abstract A new range of end-functionalized poly(1,1,2,2-tetrahydroperfluorodecyl acrylate)s was synthesized by ATRP. Such macromonomers were used as reactive and steric stabilizers for the preparation of original core-shell polyurethane particles in supercritical carbon dioxide. The nature of the chain end functionality, as well as the molar mass of the reactive stabilizer, were varied in order to investigate the role of such parameters on the properties of the resulting materials. Due to the low surface energy of PFDA combined with the high surface roughness induced by the specific microstructure of particles deposited on a silica plate, PUR materials exhibited super-hydrophobic behavior with a water CA above 150°. [source]


Superhydrophobic 3D Microstructures Assembled From 1D Nanofibers of Polyaniline

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 3 2008
Ying Zhu
Abstract Superhydrophobic dandelion-like 3D microstructures self-assembled from 1D nanofibers of PANI were prepared by a self-assembly process in the presence of perfluorosebacic acid (PFSEA) as a dopant. The dandelion-like microspheres (about 5 µm) are composed of uniform Y-shaped junction nanofibers of about 210 nm average diameter and several micrometers in length, as measured by SEM. The dandelion-like microstructure is coreless with a hollow cavity, and the shell thickness is about one third of the sphere diameter, as measured by TEM. Since PFESA dopant has a low surface energy perfluorinated carbon chain and two hydrophilic COOH end groups, it has dopant, is a "soft-template" and brings about superhydrophobic functions at the same time. Moreover, it is proposed that the self-assembly of PANI 1D nanofibers, driven by a combined interaction of hydrogen bonding, ,-, stacking and hydrophobic interactions, leads to the formation of the 3D microstructures. [source]