Low Species Diversity (low + species_diversity)

Distribution by Scientific Domains


Selected Abstracts


Effects of insects on primary production in temperate herbaceous communities: a meta-analysis

ECOLOGICAL ENTOMOLOGY, Issue 5 2003
Malcolm D. Coupe
Abstract., 1. The effects of insects on primary production in temperate herbaceous communities were investigated in a meta-analysis. The following hypotheses were tested: (1) the effect of insects on primary production depends on community type, (2) the effect of insects on primary production varies as a function of productivity, (3) insects have a greater effect on primary production in communities with low species diversity, and (4) insects have a larger effect on primary production during outbreaks. 2. Data were collected from 24 studies in which insecticides were used to suppress insects in self-sown or pastoral communities. Effect sizes were calculated from sprayed and control plot standing crop or yield, expressed as the log response ratio, ln (sprayed plot phytomass/control plot phytomass). 3. There was a significant increase in primary production as a result of insect suppression. Forb-dominated communities showed a more variable response than graminoid communities. During outbreaks, insects had a greater negative impact on primary production. Effect size was unaffected by productivity or plant species richness. 4. Although insects lower primary production in a diversity of temperate herbaceous communities, the basic measures by which such communities are often described have little effect on the proportional impact that insects have on primary production. While outbreaks are significant predictors of higher negative impact on primary production, causes of outbreaks are not always related to traits of the plant community. [source]


Chemical amplification in an invaded food web: Seasonality and ontogeny in a high-biomass, low-diversity ecosystem,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2008
Carla A. Ng
Abstract The global spread of invasive species is changing the structure of aquatic food webs worldwide. The North American Great Lakes have proved particularly vulnerable to this threat. In nearshore areas, invasive benthic species such as dreissenid mussels and round gobies (Neogobius melanostomus) have gained dominance in recent years. Such species are driving the flow of energy and material from the water column to the benthic zone, with dramatic effect on nutrient and contaminant cycling. Here, we develop a stage-structured model of a benthified food web in Lake Michigan with seasonal resolution and show how its bioaccumulation patterns differ from expected ones. Our model suggests that contaminant recycling through the consumption of lipid-rich fish eggs and mussel detritus is responsible for these differences. In southern Lake Michigan's Calumet Harbor (Chicago, IL, USA), round gobies have nitrogen isotope signatures with considerable spread, with some values higher than their predators and others lower than their prey. Contrary to patterns observed in linear pelagic systems, we predict that polychlorinated biphenyl (PCB) concentrations in these fish decrease with increasing size due to the lipid- and benthos-enriched diets of smaller fish. We also present here round goby PCB concentrations measured in 2005 after an invasional succession in Calumet Harbor and demonstrate how the change from one invasive mussel species to another may have led to a decrease in round goby PCB accumulation. Our results suggest that benthic-dominated systems differ from pelagic ones chiefly due to the influence of detritus and that these effects are exacerbated in systems with low species diversity and high biomass. [source]


Do woodlice and earthworms interact synergistically in leaf litter decomposition?

FUNCTIONAL ECOLOGY, Issue 1 2005
MARTIN ZIMMER
Summary 1In laboratory microcosms, we investigated the influence of diversity of both leaf litter and detritivores on decomposition processes. Either woodlice or earthworms, or a combination of woodlice and earthworms, fed on leaf litter of either oak or alder, or oak and alder for 8 weeks. Mass loss of leaf litter, soil microbial respiration and soil nutrient concentrations were determined every 2 weeks. 2For four out of seven decomposition parameters, the joint effects of woodlice and earthworms were stronger than the sum of single-species effects when they had fed on alder litter. When feeding on oak litter, however, woodlice and earthworms together revealed lower decomposition rates than predicted from their single effects. Joint effects of detritivores on decomposition of mixed litter were always lower than predicted from the sum of their effects. 3In mixed-litter assays, we obtained intermediate values of decomposition parameters, indicating that doubling the species richness of leaf litter from one to two species did not promote decomposition processes. Effects of mixing litter were, thus, mostly additive; essentially only when earthworms fed on mixed litter we observed, mostly positive, non-additive effects of diverse litter. 4Our findings provide evidence for a potential effect on ecosystem functioning through joint action of detritivores even at low species diversity, while litter diversity seems to be less significant. On high-quality litter, isopods and earthworms are not functionally redundant but act synergistically on litter decomposition. The effects of detritivore diversity on ecosystem processes, however, are context-specific and depend on the quality and diversity of the available food sources, and on species-specific characteristics of the detritivores. [source]


Why is there discordant diversity in sengi (Mammalia: Afrotheria: Macroscelidea) taxonomy and ecology?

AFRICAN JOURNAL OF ECOLOGY, Issue 1 2009
Galen B. Rathbun
Abstract The seventeen species of sengis or elephant-shrews form a well-defined clade of mammals endemic to Africa that occupy the extremes of terrestrial habitats, from coastal deserts to montane forests. Because of their isolation on Africa soon after the break-up of Gondwanaland, theoretically sengis initially evolved with little competition from other placental radiations. Their life history features include myrmecophagy, saltatorial gaits, no or limited use of nests, social monogamy, small litters of precocial young and absentee maternal care of neonates. These traits together are unique to the Macroscelidea and represent a wedding of features usually associated with either small antelopes or anteaters. Combined, these features define an adaptive syndrome that presumably has been relatively immune to competition from contemporary mammals, partially due to phylogenetic inertia. Yet paradoxically, the syndrome is well suited to a wide range of terrestrial habitats, resulting in low taxonomic diversity. Because of their unusual phylogeny and low species diversity, conservation interest is high for those sengis with relatively low densities in fragmented forests. Résumé Les 17 espèces de sengis (musaraignes éléphants) forment un clade bien déterminé de mammifères endémiques d'Afrique, qui occupe des habitats terrestres extrêmes allant de déserts côtiers à des forêts de montagne. En raison de leur isolement sur le continent africain très vite après la scission du Gondwana, les sengis ont théoriquement évolué au départ sans qu'il existe beaucoup de compétition avec les radiations d'autres placentaires. Les caractéristiques de leur histoire incluent de la myrmécophagie, des déplacements par bonds, un usage de nids limité, voire inexistant, la monogamie sociale, de petites portées de jeunes précoces et l'inexistence de soins maternels pour les nouveau-nés. Toutes ces caractéristiques sont uniques pour les Macroscélidés et représentent un regroupement de caractéristiques d'habitude associées à de petites antilopes ou à des fourmiliers. Combinées, ces caractéristiques définissent un syndrome d'adaptation qui, sans doute, fut relativement protégé de toute compétition avec des mammifères contemporains, à cause, en partie, de l'inertie phylogénétique. Mais, paradoxalement, ce syndrome est bien adaptéà une vaste gamme d'habitats terrestres, ce qui n'entraîne donc qu'une faible diversité taxonomique. En raison de leur phylogenèse inhabituelle et de la faible diversité entre ces espèces, l'intérêt de la conservation est considérable pour ces sengis dont la densité, dans des forêts fragmentées, est relativement faible. [source]


Plant communities along environmental gradients of high-arctic mires in Sassendalen, Svalbard

JOURNAL OF VEGETATION SCIENCE, Issue 6 2002
Archibald W. Vanderpuye
Elvebakk & Prestrud (1996) for species; Elvebakk (1994) for syntaxa Abstract. The wet to moist bryophyte-dominated vegetation of Sassendalen, Svalbard, was classified into seven communities. These communities were grouped into (1) Cardamino nymanii-Saxifragion foliolosae marsh; (2) Caricion stantis fen; (3) Luzulion nivalis snowbed , including manured vegetation corresponding to moss tundras. All communities have a basically arctic distribution. Marshes are developed in habitats with a water table above the bryophyte vegetation surface and fens on sites with a water table level high above the permafrost but below the bryophyte surface. Moss tundras normally have no standing water table, but in Sassendalen they have a low water table due to their development on less steep slopes than in their normal habitat near bird cliffs. CCA confirms that the standing water level is the prime differentiating factor between the alliances, while aspect favourability and permafrost depth differentiate between the fen communities and temporary desiccation is important for the Catoscopium nigritum community. Carex subspathacea is a characteristic fen species in the absence of other Carex species dominating elsewhere in the Arctic. Arctic marshes are linked to an extremely cold environment. They have a very low species diversity with a few species dominating; Arctophila fulva, Pseudocalliergon trifarium, Scorpidium scorpioides and Warnstorfia tundrae are character species. Moss tundra as defined here appears to be restricted to Svalbard and, probably, neighbouring Novaya Zemlya. This may be due to the absence of rodents and the high seabird density, which is related to the mild sea currents reaching further to the north here and which implies manuring of surrounding ecosystems. Manuring in a very cold environment produces moss carpets with a thin active layer and accumulation of thick peat layers without a standing water level. In Sassendalen the role of arctic seabirds is replaced by Svalbard reindeer which are nonmigratory and are concentrated to favourable grazing areas where their manuring effect is intense. Their long-term manuring effect probably explains the occurrence of moss tundras in this weakly rolling landscape where seabird colonies are absent. [source]


Palaeontologic and biogeochemical characterization of the Cyrtograptus lundgreni event in the black shales of eastern Mid-Sardinia, Italy

LETHAIA, Issue 2 2006
Paola Pittau
A succession of biotic and geochemical changes that occurred during the Cyrtograptus lundgreni Event (Late Wenlock) have been recorded from the ,pelagic' black-shales in the Goni section, eastern mid-Sardinia, Italy. The studied interval encompasses the Cyrtograptus rigidus to Pristiograptus dubius-Gothograptus nassa zones. The fossil association includes graptolites, chitinozoans and microplankton i.e. probable linings of agglutinated foraminifera and radiolaria capsular membranes. Analysis of the chitinozoan distribution revealed a succession of several chitinozoan associations with low species diversity and dominated by opportunistic species. Three chitinozoan faunal turnovers and three extinction events have been recorded. Two of them coincide with graptolite extinctions whereas one probably is of local significance. Disappearance of the chitinozoan and microplankton associations occurred during four consecutive graptolite zones. Geochemical data (trace elements analysis) showed significantly higher (up to c. 100%) values for Co and Cd in the sedimentary organic matter (SOM) than in the whole rock samples. Possible relationships between peaks of metal enrichment, the major faunal changes among chitinozoans, extinction events among chitinozoans and graptolites and, to a certain extent, oceanic events may be inferred. The first extinction datum is older that those occurring in Gotland, Sweden and Thüringen, Germany and is so far considered to be of local significance. The second extinction datum of Sardinia can be matched with Datum 1 of Gotland and Thüringen. A close correlation between the third extinction datum of Sardinia and Datum 2 of Thüringen and Gotland reinforces the importance of these events at global scale. [source]


Ecophysiology of Antarctic vascular plants

PHYSIOLOGIA PLANTARUM, Issue 4 2002
Miren Alberdi
Most of the ice and snow-free land in the Antarctic summer is found along the Antarctic Peninsula and adjacent islands and coastal areas of the continent. This is the area where most of the Antarctic vegetation is found. Mean air temperature tends to be above zero during the summer in parts of the Maritime Antarctic. The most commonly found photosynthetic organisms in the Maritime Antarctic and continental edge are lichens (around 380 species) and bryophytes (130 species). Only two vascular plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl., have been able to colonize some of the coastal areas. This low species diversity, compared with the Arctic, may be due to permanent low temperature and isolation from continental sources of propagules. The existence of these plants in such a permanent harsh environment makes them of particular interest for the study of adaptations to cold environments and mechanisms of cold resistance in plants. Among these adaptations are high freezing resistance, high resistance to light stress and high photosynthetic capacity at low temperature. In this paper, the ecophysiology of the two vascular plants is reviewed, including habitat characteristics, photosynthetic properties, cold resistance, and biochemical adaptations to cold. [source]


Fallback foods of temperate-living primates: A case study on snub-nosed monkeys

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009
Cyril C. Grueter
Abstract Only a few primate species thrive in temperate regions characterized by relatively low temperature, low rainfall, low species diversity, high elevation, and especially an extended season of food scarcity during which they suffer from dietary stress. We present data of a case study of dietary strategies and fallback foods in snub-nosed monkeys (Rhinopithecus bieti) in the Samage Forest, Northwest Yunnan, PRC. The snub-nosed monkeys adjusted intake of plant food items corresponding with changes in the phenology of deciduous trees in the forest and specifically showed a strong preference for young leaves in spring. A non-plant food, lichens (Parmeliaceae), featured prominently in the diet throughout the year (annual representation in the diet was about 67%) and became the dominant food item in winter when palatable plant resources were scarce. Additional highly sought winter foods were frost-resistant fruits and winter buds of deciduous hardwoods. The snub-nosed monkeys' choice of lichens as a staple fallback food is likely because of their spatiotemporal consistency in occurrence, nutritional and energetic properties, and the ease with which they can be harvested. Using lichens is a way to mediate effects of seasonal dearth in palatable plant foods and ultimately a key survival strategy. The snub-nosed monkeys' fallback strategy affects various aspects of their biology, e.g., two- and three-dimensional range use and social organization. The higher abundance of lichens at higher altitudes explains the monkeys' tendency to occupy relatively high altitudes in winter despite the prevailing cold. As to social organization, the wide temporal and spatial availability of lichens strongly reduces the ecological costs of grouping, thus allowing for the formation of "super-groups." Usnea lichens, the snub-nosed monkeys' primary dietary component, are known to be highly susceptible to human-induced environmental changes such as air pollution, and a decline of this critical resource base could have devastating effects on the last remaining populations. Within the order Primates, lichenivory is a rare strategy and only found in a few species or populations inhabiting montane areas, i.e., Macaca sylvanus, Colobus angolensis, and Rhinopithecus roxellana. Other temperate-dwelling primates rely mainly on buds and bark as winter fallback foods. Am J Phys Anthropol 140:700,715, 2009. © 2009 Wiley-Liss, Inc. [source]