Home About us Contact | |||
Low Relative Humidity (low + relative_humidity)
Selected AbstractsViable but non-culturable Listeria monocytogenes on parsley leaves and absence of recovery to a culturable stateJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2007N. Dreux Abstract Aims:, To investigate the presence of viable but non-culturable Listeria monocytogenes during survival on parsley leaves under low relative humidity (RH) and to evaluate the ability of L. monocytogenes to recover from VBNC to culturable state under satured humidity. Methods and Results:, Under low RH (47,69%) on parsley leaves, the initial number of L. monocytogenes populations counted on non selective media (109 L. monocytogenes per leaf on TSA) was reduced by 6 log10 scales in 15 days, whereas number of viable L. monocytogenes counted under the microscope was reduced by 3,4 log10 scales, indicating the presence of VBNC cells. This was demonstrated on three L. monocytogenes strains (EGDe, Bug 1995 and LmP60). Changing from low to 100% RH permitted an increase of the culturable counts of L. monocytogenes and this growth was observed only when residual culturable cells were present. Moreover, VBNC L. monocytogenes inoculated on parsley leaves did not become culturable after incubation under 100% RH. Conclusions:, Dry conditions induced VBNC L. monocytogenes on parsley leaves but these VBNC were likely unable to recover culturability after transfer to satured humidity. Significance and Impact of Study:, Enumeration on culture media presumably under-estimates the number of viable L. monocytogenes on fresh produce after exposure to low RH. [source] DEFINITION OF INTERNAL MORPHOLOGY AND STRUCTURAL CHANGES DUE TO DEHYDRATION OF RADISH (RAPHANUS SATIVUS L. CV. SUPRELLA) USING MAGNETIC RESONANCE IMAGING SPECTROSCOPYJOURNAL OF FOOD QUALITY, Issue 5-6 2005ANNA SALERNO ABSTRACT Magnetic resonance imaging (MRI) spectroscopy is a promising nondestructive analytical technique in food science. It offers the unique opportunity of studying vegetables, fruits and other foods in general, in their wholeness without any preparative manipulation of the sample. The aim of this study was to investigate the internal structure of radish and to monitor the variations induced by postharvest storage at low relative humidity. The MRI allowed for a clear definition of the internal structure of radishes with distinct visibility of xylematic and phloematic vessels distributed in a radial way. A decrease in water content, which results in the breakdown of tissues and the formation of large cavities with the detachment of the external cortex, is the main consequence of a few days' storage in low relative humidity. Both of these are factors that drastically decrease the quality of the radish's fleshy root. The MRI images give a novel insight into the internal organization of the hypocotyl, and this offers opportunities for further studies with regard to the structural differences related to the cultivars as well as the cultivation system. [source] Environment and host-plant genotype effects on the seasonal dynamics of a predatory mite on cassava in sub-humid tropical AfricaAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009Christine Zundel Abstract 1,In tropical dry seasons, survival of small arthropods such as predatory mites is often negatively affected by low relative humidity (RH). For species that do not diapause or migrate to refuges, the ability of the habitat to mitigate climatic conditions becomes crucial. 2,The relative effect of macro-habitat (dry grassland hill, humid multiple cropping area, humid riparian forest) and microhabitat (host-plant genotypes with hairy, semi-hairy and glabrous apices) on the seasonal dynamics of the phytoseiid mite Typhlodromalus aripo, a predator of Mononychellus tanajoa on cassava, was examined in a field experiment during a dry season. The effect of RH and plant genotype on T. aripo egg survival was determined in an environment control chamber. 3,Predator abundance was higher in humid multiple cropping areas and on hairy cassava compared with the other habitat types and cassava genotypes. 4,Discriminant and regression analyses showed that the predator's dry season persistence was related to high RH, high plant vigour and hairy apices, but not to prey abundance. 5,In the controlled climate experiment, the effect of host-plant morphology was evident only at the intermediate RH level of 55%. An effect of apex hairiness was not found. 6,It is concluded that the effect of genotype on T. aripo persistence diminishes under low RH conditions, and that supportive effects of apex hairs become effective only in the field, probably through protection from wind and/or intraguild predation. Humid multiple cropping areas planted with hairy and vigorous cassava genotypes are suitable dry season reservoirs for T. aripo. [source] A solid-state 23Na NMR study of monovalent cation binding to double-stranded DNA at low relative humidityMAGNETIC RESONANCE IN CHEMISTRY, Issue 4 2008Alan Wong Abstract We report a solid-state 23Na NMR study of monovalent cation (Li+, Na+, K+, Rb+, Cs+ and NH4+) binding to double-stranded calf thymus DNA (CT DNA) at low relative humidity, ca 0,10%. Results from 23Na31P rotational echo double resonance (REDOR) NMR experiments firmly establish that, at low relative humidity, monovalent cations are directly bound to the phosphate group of CT DNA and are partially dehydrated. On the basis of solid-state 23Na NMR titration experiments, we obtain quantitative thermodynamic parameters concerning the cation-binding affinity for the phosphate group of CT DNA. The free energy difference (,G° ) between M+ and Na+ ions is as follows: Li+ (,1.0 kcal mol,1), K+ (7.2 kcal mol,1), NH4+ (1.0 kcal mol,1), Rb+ (4.5 kcal mol,1) and Cs+ (1.5 kcal mol,1). These results suggest that, at low relative humidity, the binding affinity of monovalent cations for the phosphate group of CT DNA follows the order: Li+ > Na+ > NH4+ > Cs+ > Rb+ > K+. This sequence is drastically different from that observed for CT DNA in solution. This discrepancy is attributed to the different modes of cation binding in dry and wet states of DNA. In the wet state of DNA, cations are fully hydrated. Our results suggest that the free energy balance between direct cation,phosphate contact and dehydration interactions is important. The reported experimental results on relative ion-binding affinity for the DNA backbone may be used for testing theoretical treatment of cation-phosphate interactions in DNA. Copyright © 2008 John Wiley & Sons, Ltd. [source] Water and Carboxyl Group Environments in the Dehydration Blueshift of Bacteriorhodopsin,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2000Robert Renthal ABSTRACT The proton channels of the bacteriorhodopsin (BR) proton pump contain bound water molecules. The channels connect the purple membrane surfaces with the protonated retinal Schiff base at the membrane center. Films of purple membrane equilibrated at low relative humidity display a shift of the 570 nm retinal absorbance maximum to 528 nm, with most of the change occurring below 15% relative humidity. Purple membrane films were dehydrated to defined humidities between about 50 and 4.5% and examined by Fourier transform infrared difference spectroscopy. In spectra of dehydrated-minus-hydrated purple membrane, troughs are observed at 3645 and 3550 cm,1, and peaks are observed at 3665 and 3500 cm,1. We attribute these changes to water dissociation from the proton uptake channel and the resulting changes in hydrogen bonding of water that remains bound. Also, in the carboxylic acid spectral region, a trough was observed at 1742 cm,1 and a peak at 1737 cm,1. The magnitude of the trough to peak difference between 1737 and 1742 cm,1 correlates linearly with the extent of the 528 nm pigment. This suggests that a carboxylic acid group or groups is undergoing a change in environment as a result of dehydration, and that this change is linked to the appearance of the 528 nm pigment. Dehydration difference spectra with BR mutants D96N and D115N show that the 1737,1742 cm,1 change is due to Asp 96 and Asp 115. A possible mechanism is suggested that links dissociation of water in the proton uptake channel to the environmental change at the Schiff base site. [source] Managing precipitation use in sustainable dryland agroecosystemsANNALS OF APPLIED BIOLOGY, Issue 2 2004GARY A PETERSON Summary In the Great Plains of North America potential evaporation exceeds precipitation during most months of the year. About 75% of the annual precipitation is received from April through September, and is accompanied by high temperatures and low relative humidity. Dryland agriculture in the Great Plains has depended on wheat production in a wheat-fallow agroecosystem (one crop year followed by a fallow year). Historically this system has used mechanical weed control practices during the fallow period, which leaves essentially no crop residue cover for protection against soil erosion and greatly accelerates soil organic carbon oxidation. This paper reviews the progress made in precipitation management in the North American Great Plains and synthesises data from an existing long-term experiment to demonstrate the management principles involved. The long-term experiment was established in 1985 to identify dryland crop and soil management systems that would maximize precipitation use efficiency (maximization of biomass production per unit of precipitation received), improve soil productivity, and increase economic return to the farmers in the West Central portion of the Great Plains. Embedded within the primary objective are sub-objectives that focus on reducing the amount of summer fallow time and reversing the soil degradation that has occurred in the wheat-fallow cropping system. The experiment consists of four variables: 1) Climate regime; 2) Soils; 3) Management systems; and 4) Time. The climate variable is based on three levels of potential evapotranspiration (ET), which are represented by three sites in eastern Colorado. All sites have annual long-term precipitation averages of approximately 400,450 mm, but vary in growing season open pan evaporation from 1600 mm in the north to 1975 mm in the south. The soil variable is represented by a catenary sequence of soils at each site. Management systems, the third variable, differ in the amount of summer fallow time and emphasize increased crop diversity. All systems are managed with no-till techniques. The fourth variable is time, and the results presented in this paper are for the first 12 yr (3 cycles of the 4-yr system). Comparing yields of cropping systems that differ in cycle length and systems that contain fallow periods, when no crop is produced, is done with a technique called "annualisation". Yields are "annualised" by summing yields for all crops in the system and dividing by the total number of years in the system cycle. For example in a wheat-fallow system the wheat yield is divided by two because it takes 2 yr to produce one crop. Cropping system intensification increased annualised grain and crop residue yields by 75 to 100% compared to wheat-fallow. Net return to farmers increased by 25% to 45% compared to wheat-fallow. Intensified cropping systems increased soil organic C content by 875 and 1400 kg ha,1, respectively, after 12 yr compared to the wheat-fallow system. All cropping system effects were independent of climate and soil gradients, meaning that the potential for C sequestration exists in all combinations of climates and soils. Soil C gains were directly correlated to the amount of crop residue C returned to the soil. Improved macroaggregation was also associated with increases in the C content of the aggregates. Soil bulk density was reduced by 0.01g cm,3 for each 1000 kg ha,1 of residue addition over the 12-yr period, and each 1000 kg ha,1 of residue addition increased effective porosity by 0.3%. No-till practices have made it possible to increase cropping intensification beyond the traditional wheat-fallow system and in turn water-use efficiency has increased by 30% in West Central Great Plains agroecosystems. Cropping intensification has also provided positive feedbacks to soil productivity via the increased amounts of crop residue being returned to the soil. [source] |