Low Biomass (low + biomass)

Distribution by Scientific Domains


Selected Abstracts


Limits of life in hostile environments: no barriers to biosphere function?

ENVIRONMENTAL MICROBIOLOGY, Issue 12 2009
Jim P. Williams
Summary Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (aw) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at aw values of , 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions. [source]


Effects of resource competition and herbivory on plant performance along a natural productivity gradient

JOURNAL OF ECOLOGY, Issue 2 2000
René Van Der Wal
Summary 1,The effects of resource competition and herbivory on a target species, Triglochin maritima, were studied along a productivity gradient of vegetation biomass in a temperate salt marsh. 2,Transplants were used to measure the impact of grazing, competition and soil fertility over two growing seasons. Three parts of the marsh were selected to represent different successional stages; Triglochin reached local dominance at intermediate biomass of salt-marsh vegetation. At each stage, three competition treatments (full plant competition, root competition only, and no competition) and three grazing treatments (full grazing, no grazing on Triglochin, and no grazing on Triglochin or neighbours) were applied to both seedlings and mature plants. 3,Competition and herbivory reduced biomass and flowering of Triglochin. The impact of grazing was strongest at the stage with the lowest biomass, while both herbivory and competition had a significant impact at the stage with the highest biomass. When plants were protected from direct herbivory, competition operated at all three successional stages. 4,Grazing reduced light competition when vegetation biomass was low or intermediate, but at high biomass there was competition for light even when grazing occurred. Herbivore exclusion increased the effects of plant competition. Except at low biomass, the negative impact of plant competition on Triglochin performance was greater than the positive effect of not being grazed. 5,Grazing played a minor role in seedling survival and establishment which were largely controlled by competitive and facilitative effects. 6,Once established, the persistence of Triglochin will be determined largely by grazing. Intense grazing in the younger marsh and increasing competition for light in the older marsh will restrict the distribution to sites with intermediate biomass. [source]


Trophic cascades in a temperate seagrass community

OIKOS, Issue 5 2008
Per-Olav Moksnes
We assessed the relative importance of bottom,up and top,down processes in structuring an eelgrass community in Sweden, a system impacted both by eutrophication and overfishing. Using artificial seagrass as substrate, we manipulated nutrient levels and predator abundance in a full-factorial cage-experiment. The results revealed a seagrass community dominated by strong top,down processes controlling the aggregate biomass of mesograzers and macroalgae. In the absence of predators the large amphipod Gammarus locusta became very abundant resulting in a leaf community with low biomass of algae and smaller mobile fauna. One enclosed gobid fish predator reduced the abundance of adult G. locusta by >90%, causing a three to six times increase in the biomass of algae, smaller mesograzers and meiofauna. Numerous small predators in uncaged habitats reduced the biomass of G. locusta and other mesograzers by >95% in comparison to the fish treatment, further increasing the biomass of epiphytic algae and meiofauna. Although water column nutrient enrichment caused a temporal bloom of the filamentous macroalgae Ulva spp., no significant nutrient-effects were found on the algal community at the end of the experiment. The only lasting nutrient-effect was a significant increase in the biomass of G. locusta, but only in the absence of ambient predators. These results demonstrate that mesograzers can respond to enhanced food supply, increase their biomass and control the algal growth when predation rates are low. However, in the assessed system, high predation rates appear to make mesograzers functionally extinct, causing a community-wide trophic cascade that promotes the growth of ephemeral algae. This top,down effect could penetrate down, despite a complex food-web because the interaction strength in the community was strongly skewed towards two functionally dominant algal and grazer species that were vulnerable to consumption. These results indicate that overexploitation of gadoid fish may be linked to increased macroalgal blooms and loss of eelgrass in the area through a trophic cascade affecting the abundance of mesograzers. [source]


Phytoremediation of arsenic in mining-contaminated areas: The future of transgenic technology

REMEDIATION, Issue 4 2010
Hossain M. Anawar
A considerable number of contaminated mining sites in Europe and other parts of the world pose environmental hazards. Given the multifaceted benefits of phytoremediation, screening of plant communities grown in contaminated areas is being conducted to identify hyperaccumulating plant species. A few arsenic (As) hyperaccumulating plants are found in tropical countries; however, generally, they are not grown in contaminated mining sites of cold and temperate countries (Europe and other parts of the world). The transgenic plants identified to date are not believed to be suitable for commercial use of phytoremediation. A few tolerant plant species in mining sites that are found to have elevated As levels primarily concentrate As in their roots. The remediation potential of many of these tolerant plants is limited because of their slow growth and low biomass. Therefore, phytostabilization of contaminated mining sites using tolerant plant species with high biomass and a more extensive root system is the only solution to date in Europe and some other parts of the world. © 2010 Wiley Periodicals, Inc. [source]


Ecological contrasts across an Antarctic land,sea interface

AUSTRAL ECOLOGY, Issue 5 2006
CATHERINE L. WALLER
Abstract We report the composition of terrestrial, intertidal and shallow sublittoral faunal communities at sites around Rothera Research Station, Adelaide Island, Antarctic Peninsula. We examined primary hypotheses that the marine environment will have considerably higher species richness, biomass and abundance than the terrestrial, and that both will be greater than that found in the intertidal. We also compared ages and sizes of individuals of selected marine taxa between intertidal and subtidal zones to test the hypothesis that animals in a more stressed environment (intertidal) would be smaller and shorter lived. Species richness of intertidal and subtidal communities was found to be similar, with considerable overlap in composition. However, terrestrial communities showed no overlap with the intertidal, differing from previous reports, particularly from further north on the Antarctic Peninsula and Scotia Arc. Faunal biomass was variable but highest in the sublittoral. While terrestrial communities were depauperate with low biomass they displayed the highest overall abundance, with a mean of over 3 × 105 individuals per square metre. No significant differences in ages of intertidal and subtidal individuals of the same species were found, with bryozoan colonies of up to 4 years of age being present in the intertidal. In contrast with expectation and the limited existing literature we conclude that, while the Antarctic intertidal zone is clearly a suboptimal and highly stressful habitat, its faunal community can be well established and relatively diverse, and is not limited to short-term opportunists or waifs and strays. [source]