Low Barrier (low + barrier)

Distribution by Scientific Domains


Selected Abstracts


Shelf life extension of durum semolina-based fresh pasta

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 8 2010
Cristina Costa
Summary In this work, the combined effects of chitosan, modified atmosphere packaging (MAP) and packaging barrier properties on shelf life of fresh pasta is presented. In particular, all pasta samples were packaged under active and passive MAP in two different polymeric films with high and low barrier properties. In order to assess the influence of the variables described beforehand on the shelf life of pasta, the sensorial and microbiological quality has been monitored during storage. Results confirmed the antimicrobial properties of chitosan. Moreover, the findings recorded in this study suggest that the shelf life of fresh pasta is limited by the sensorial characteristics. Statistically significant differences between the shelf life of pasta packaged in low barrier and high barrier films were found. The best result was obtained for samples packaged in high barrier film, due to the ability of the packaging to maintain the gas headspace conditions during the storage. [source]


Molecular dynamics simulations of the detoxification of paraoxon catalyzed by phosphotriesterase

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2009
Xin Zhang
Abstract Combined QM(PM3)/MM molecular dynamics simulations together with QM(DFT)/MM optimizations for key configurations have been performed to elucidate the enzymatic catalysis mechanism on the detoxification of paraoxon by phosphotriesterase (PTE). In the simulations, the PM3 parameters for the phosphorous atom were reoptimized. The equilibrated configuration of the enzyme/substrate complex showed that paraoxon can strongly bind to the more solvent-exposed metal ion Zn,, but the free energy profile along the binding path demonstrated that the binding is thermodynamically unfavorable. This explains why the crystal structures of PTE with substrate analogues often exhibit long distances between the phosphoral oxygen and Zn,. The subsequent SN2 reaction plays the key role in the whole process, but controversies exist over the identity of the nucleophilic species, which could be either a hydroxide ion terminally coordinated to Zn, or the ,-hydroxo bridge between the ,- and ,-metals. Our simulations supported the latter and showed that the rate-limiting step is the distortion of the bound paraoxon to approach the bridging hydroxide. After this preparation step, the bridging hydroxide ion attacks the phosphorous center and replaces the diethyl phosphate with a low barrier. Thus, a plausible way to engineer PTE with enhanced catalytic activity is to stabilize the deformed paraoxon. Conformational analyses indicate that Trp131 is the closest residue to the phosphoryl oxygen, and mutations to Arg or Gln or even Lys, which can shorten the hydrogen bond distance with the phosphoryl oxygen, could potentially lead to a mutant with enhanced activity for the detoxification of organophosphates. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


Ab Initio Molecular Dynamics Studies of Ionic Dissolution and Precipitation of Sodium Chloride and Silver Chloride in Water Clusters, NaCl(H2O)n and AgCl(H2O)n, n = 6, 10, and 14

CHEMISTRY - A EUROPEAN JOURNAL, Issue 24 2006
Chi-Kit Siu Dr.
Abstract An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H2O)n and AgCl(H2O)n with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H2O)n is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ,mol,1), are identifiable on the free energy profiles of NaCl(H2O)n for n = 10 and 14 at 300 K, with the Na+/Cl, pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ,mol,1). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H2O)n clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure. [source]


Addressing chemical diversity by employing the energy landscape concept

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 5 2010
Martin Jansen
Exploring the structural diversity of a chemical system rests on three pillars. First, there is the global exploration of its energy landscape that allows one to predict which crystalline modifications can exist in a chemical system at a given temperature and pressure. Next, there is the development of new synthesis methods in solid-state chemistry, which require only very low activation energies such that even metastable modifications corresponding, for example, to minima on the landscape surrounded by low barriers can be realized. Finally, there is the theoretical design of optimal synthesis routes, again based on the study of the system's energy landscape. In this paper the energy landscape approach to the prediction of stable and metastable compounds as a function of temperature and pressure is presented, with a particular focus on possible phase transitions. Furthermore, several examples are presented, where such predicted compounds were subsequently successfully synthesized, often employing a newly developed synthesis method, low-temperature atom-beam deposition. [source]


Ab initio prediction of optical rotation: Comparison of density functional theory and Hartree-Fock methods for three 2,7,8-trioxabicyclo[3.2.1]octanes

CHIRALITY, Issue 4 2002
P.J. Stephens
Abstract We report ab initio calculations of the frequency-dependent electric dipole-magnetic dipole polarizabilities, ,(,), at the sodium D line frequency and, thence, of the specific rotations, [,]D, of 2,7,8-trioxabicyclo[3.2.1]octane, 1, and its 1-methyl derivative, 2, using the Density Functional Theory (DFT) and Hartree-Fock/Self-Consistent Field (HF/SCF) methodologies. Gauge-invariant (including) atomic orbitals (GIAOs) are used to ensure origin-independent [,]D values. Using large basis sets which include diffuse functions DFT [,]D values are in good agreement with experimental values (175.8° and 139.2° for (1S,5R)- 1 and - 2, respectively); errors are in the range 25,35°. HF/SCF [,]D values, in contrast, are much less accurate; errors are in the range 75,95°. The use of small basis sets which do not include diffuse functions substantially lowers the accuracy of predicted [,]D values, as does the use of the static limit approximation: ,(,) , ,(o). The use of magnetic-field-independent atomic orbitals, FIAOs, instead of GIAOs, leads to origin-dependent, and therefore nonphysical, [,]D values. We also report DFT calculations of [,]D for the 1-phenyl derivative of 1, 3. DFT calculations find two stable conformations, differing in the orientation of the phenyl group, of very similar energy, and separated by low barriers. Values of [,]D predicted using two different algorithms for averaging over phenyl group orientations are in good agreement with experiment. In principle, the absolute configuration (AC) of a chiral molecule can be assigned by comparison of the optical rotation predicted ab initio to the experimental value. Our results demonstrate the critical importance of the choice of ab initio methodology in obtaining reliable optical rotations and, hence, ACs, and show that, at the present time, DFT constitutes the method of choice. Chirality 14:288,296, 2002. © 2002 Wiley-Liss, Inc. [source]