Locomotor Stimulation (locomotor + stimulation)

Distribution by Scientific Domains


Selected Abstracts


Effects of locomotor stimulation and protein synthesis inhibition on circadian rhythms in size changes of L1 and L2 interneurons in the fly's visual system

DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2007
Elzbieta Kula
Abstract Axons of monopolar cell interneurons L1 and L2 in the first optic lobe (lamina) of the fly Musca domestica undergo cyclical changes in diameter. These axons swell during the day and shrink during the night. In addition, the axons' size depends on light conditions since they are largest in continuous light (LL), somewhat smaller under day/night (LD) conditions, and smallest under constant darkness (DD). In this study we found that sizes of both cells can further increase in free flying flies under LD conditions, while the visual stimulation alone does not have significant effect on the cross-sectional area of L1 and L2 axons. The stimulation of free flying had no effect on L1 and L2 sizes if it was performed at the beginning of subjective day in LL or DD. Our results indicate that a maximal increase in size of L1 and L2 is observed when stimulation of free flying is synchronized with a fly' daily peak of activity. We also found that protein synthesis is needed to increase size of monopolar cell axons during the day when they normally swell. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


Dopamine receptors modulate ethanol's locomotor-activating effects in preweanling rats

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 1 2010
Carlos Arias
Abstract Near the end of the second postnatal week motor activity is increased soon after ethanol administration (2.5,g/kg) while sedation-like effects prevail when blood ethanol levels reach peak values. This time course coincides with biphasic reinforcement (appetitive and aversive) effects of ethanol determined at the same age. The present experiments tested the hypothesis that ethanol-induced activity during early development in the rat depends on the dopamine system, which is functional in modulating motor activity early in ontogeny. Experiments 1a and 1b tested ethanol-induced activity (0 or 2.5,g/kg) after a D1-like (SCH23390; 0, .015, .030, or .060,mg/kg) or a D2-like (sulpiride; 0, 5, 10, or 20,mg/kg) receptor antagonist, respectively. Ethanol-induced stimulation was suppressed by SCH23390 or sulpiride. The dopaminergic antagonists had no effect on blood ethanol concentration (Experiments 2a and 2b). In Experiment 3, 2.5,g/kg ethanol increased dopamine concentration in striatal tissue as well as locomotor activity in infant Wistar rats. Adding to our previous results showing a reduction in ethanol induced activity by a GABA B agonist or a nonspecific opioid antagonist, the present experiments implicate both D1-like and D2-like dopamine receptors in ethanol-induced locomotor stimulation during early development. According to these results, the same mechanisms that modulate ethanol-mediated locomotor stimulation in adult rodents seem to regulate this particular ethanol effect in the infant rat. © 2009 Wiley Periodicals, Inc. Dev Psychobiol 52: 13,23, 2010 [source]


PRECLINICAL STUDY: Long-term haloperidol treatment (but not risperidone) enhances addiction-related behaviors in mice: role of dopamine D2 receptors

ADDICTION BIOLOGY, Issue 3 2009
Rita C. Carvalho
ABSTRACT The high prevalence of psychostimulant abuse observed in schizophrenic patients may be related to the development of mesolimbic dopaminergic supersensitivity (MDS) or nigrostriatal dopaminergic supersensitivity (NDS) in response to the chronic blockade of dopamine receptors produced by typical neuroleptic treatment. We compared the effects of withdrawal from long-term administration of the typical neuroleptic haloperidol (Hal) and/or the atypical agent risperidone (Ris) on MDS and NDS, behaviorally evaluated by amphetamine-induced locomotor stimulation (AILS) and apomorphine-induced stereotypy (AIS) in mice, respectively. We further evaluated the duration of MDS and investigated the specific role of dopamine D2 receptors in this phenomenon by administering the D2 agonist quinpirole (Quin) to mice withdrawn from long-term treatment with these neuroleptics. Withdrawal (48 hours) from long-term (20 days) Hal (0.5 mg/kg i.p.) (but not 0.5 mg/kg Ris i.p.) treatment potentiated both AILS and AIS. Ris co-administration abolished the potentiation of AILS and AIS observed in Hal-withdrawn mice. Ten days after withdrawal from long-term treatment with Hal (but not with Ris or Ris + Hal), a potentiation in AILS was still observed. Only Hal-withdrawn mice presented an attenuation of locomotor inhibition produced by Quin. Our data suggest that the atypical neuroleptic Ris has a pharmacological property that counteracts the compensatory MDS and NDS developed in response to the chronic blockade of dopamine receptors imposed by Ris itself or by typical neuroleptics such as Hal. They also indicate that MDS may be long lasting and suggest that an upregulation of dopamine D2 receptors in response to long-term treatment with the typical neuroleptic is involved in this phenomenon. [source]


PRECLINICAL STUDY: Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens

ADDICTION BIOLOGY, Issue 1 2007
Elisabet Jerlhag
ABSTRACT Ghrelin stimulates appetite, increases food intake and causes adiposity by mechanisms that include direct actions on the brain. Previously, we showed that intracerebroventricular administration of ghrelin has stimulatory and dopamine-enhancing properties. These effects of ghrelin are mediated via central nicotine receptors, suggesting that ghrelin can activate the acetylcholine,dopamine reward link. This reward link consists of cholinergic input from the laterodorsal tegmental area (LDTg) to the mesolimbic dopamine system that originates in the ventral tegmental area (VTA) and projects to the nucleus accumbens. Given that growth hormone secretagogue receptors (GHSR-1A) are expressed in the VTA and LDTg, brain areas involved in reward, the present series of experiments were undertaken to examine the hypothesis that these regions may mediate the stimulatory and dopamine-enhancing effects of ghrelin, by means of locomotor activity and in vivo microdialysis in freely moving mice. We found that local administration of ghrelin into the VTA (1 µg in 1 µl) induced an increase in locomotor activity and in the extracellular concentration of accumbal dopamine. In addition, local administration of ghrelin into the LDTg (1 µg in 1 µl) caused a locomotor stimulation and an increase in the extracellular levels of accumbal dopamine. Taken together, this indicates that ghrelin might, via activation of GHSR-1A in the VTA and LDTg, stimulate the acetylcholine,dopamine reward link, implicating that ghrelin is a part of the neurochemical overlap between the reward systems and those that regulate energy balance. [source]


REVIEW: Alcohol-related genes: contributions from studies with genetically engineered mice

ADDICTION BIOLOGY, Issue 3-4 2006
John C. Crabbe
ABSTRACT Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, ,-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials. [source]


Combined Scopolamine and Ethanol Treatment Results in a Locomotor Stimulant Response Suggestive of Synergism That is Not Blocked by Dopamine Receptor Antagonists

ALCOHOLISM, Issue 3 2009
Angela C. Scibelli
Background:, Muscarinic acetylcholine receptors (mAChRs) are well positioned to mediate ethanol's stimulant effects. To investigate this possibility, we examined the effects of scopolamine, a receptor subtype nonselective mAChR antagonist, on ethanol-induced stimulation in genotypes highly sensitive to this effect of ethanol. We also investigated whether the dopamine D1-like receptor antagonist, SCH-23390 or the dopamine D2-like receptor antagonist, haloperidol, could block the extreme stimulant response found following co-administration of scopolamine and ethanol. Methods:, Scopolamine (0, 0.0625, 0.125, 0.25, or 0.5 mg/kg) was given 10 minutes prior to saline or ethanol (0.75 to 2 g/kg) to female FAST (Experiment I) or DBA/2J (Experiment II) mice that were then tested for locomotion for 30 minutes. In Experiments III and IV, respectively, SCH-23390 (0, 0.015, or 0.03 mg/kg) was given 10 minutes prior, and haloperidol (0, 0.08, or 0.16 mg/kg) was given 2 minutes prior, to scopolamine (0 or 0.5 mg/kg), followed 10 minutes later by saline or ethanol (1.5 g/kg) and female DBA/2J mice were tested for locomotion for 30 minutes. Results:, FAST and DBA/2J mice displayed a robust enhancement of the locomotor effects of ethanol following pretreatment with scopolamine that was suggestive of synergism. SCH-23390 had no effect on the response to the scopolamine + ethanol drug combination, nor did it attenuate ethanol- or scopolamine-induced locomotor activity. Haloperidol, while attenuating the effects of ethanol, was not able to block the effects of scopolamine or the robust response to the scopolamine-ethanol drug combination. Conclusions:, These results suggest that while muscarinic receptor antagonism robustly enhances acute locomotor stimulation to ethanol, dopamine receptors are not involved in the super-additive interaction of scopolamine and ethanol treatment. They also suggest that in addition to cautions regarding the use of alcohol when scopolamine is clinically prescribed due to enhanced sedative effects, enhanced stimulation may also be a concern. [source]


Attenuation of the Stimulant Response to Ethanol is Associated with Enhanced Ataxia for a GABAA, but not a GABAB, Receptor Agonist

ALCOHOLISM, Issue 1 2009
Sarah E. Holstein
Background:, The ,-aminobutyric acid (GABA) system is implicated in the neurobiological actions of ethanol, and pharmacological agents that increase the activity of this system have been proposed as potential treatments for alcohol use disorders. As ethanol has its own GABA mimetic properties, it is critical to determine the mechanism by which GABAergic drugs may reduce the response to ethanol (i.e., via an inhibition or an accentuation of the neurobiological effects of ethanol). Methods:, In this study, we examined the ability of 3 different types of GABAergic compounds, the GABA reuptake inhibitor NO-711, the GABAA receptor agonist muscimol, and the GABAB receptor agonist baclofen, to attenuate the locomotor stimulant response to ethanol in FAST mice, which were selectively bred for extreme sensitivity to ethanol-induced locomotor stimulation. To determine whether these compounds produced a specific reduction in stimulation, their effects on ethanol-induced motor incoordination were also examined. Results:, NO-711, muscimol, and baclofen were all found to potently attenuate the locomotor stimulant response to ethanol in FAST mice. However, both NO-711 and muscimol markedly increased ethanol-induced ataxia, whereas baclofen did not accentuate this response. Conclusions:, These results suggest that pharmacological agents that increase extracellular concentrations of GABA and GABAA receptor activity may attenuate the stimulant effects of ethanol by accentuating its intoxicating and sedative properties. However, selective activation of the GABAB receptor appears to produce a specific attenuation of ethanol-induced stimulation, suggesting that GABAB receptor agonists may hold greater promise as potential pharmacotherapies for alcohol use disorders. [source]