Home About us Contact | |||
Local Processes (local + process)
Selected AbstractsMedical journals and effective dissemination of health researchHEALTH INFORMATION & LIBRARIES JOURNAL, Issue 4 2001Aravinthan Coomarasamy Clinical medical journals have not been effective in meeting the information needs of practitioners and bridging the gap between clinical research and practice. The slow adoption of results of clinical research is at least partly due to the failure of clinical journals to disseminate information in a way that would motivate practitioners to change practice. Although implementation is primarily a local process, medical journals are in a unique position to advance implementation by modifying their focus and adjusting their contents. Strategies that may be useful include publication of pre-appraised evidence summaries and ,clinical bottom-lines' and giving importance to systematic reviews and large evaluative research articles as they represent higher levels of evidence and have greater potential to change practice. Clinical journals should encourage researchers to consider how and by whom the findings will be used and provide information on implications for implementation such as possible strategies that may work, cost-effectiveness, side-effects and potential barriers to implementation. Medical journal publishers should explore ways to cooperate so that findings of landmark clinical trials could be shared thus reducing the ,scatter' of medical information. Electronic media offers numerous advantages such as quick accessibility and linking of information, and medical journals should capitalize on such innovations. There is a paradigm shift in health care practice as evidence is consciously and explicitly incorporated into individual patient care. Medical journals need to change to reflect this change in practice and provide practitioners with valid and relevant information. [source] Environmental Narratives on Protection and Production: Nature-based Conflicts in R7iacute;o San Juan, NicaraguaDEVELOPMENT AND CHANGE, Issue 4 2000Anja Nygren This article focuses on local processes and global forces in the struggle over the fate of forests and over the contested claims of protection and production in a protected area buffer zone of Río San Juan, Nicaragua. The struggle over control of local natural resources is seen as a multifaceted process of development and power involving diverse social actors, from agrarian politicians and development agents to a heterogeneous group of local settlers, absentee cattle raisers, timber dealers, transnational corporations, and non-governmental organizations. The initial interest is in the local resource-related discourses and actions; the analysis then broadens to include the larger political-economic processes and environment-development discourses that affect the local systems of production and systems of signification. The article underlines environmental resource conflicts as one of the major challenges in subjecting structures of social power to critical analysis. [source] Development Discourses and Peasant,Forest Relations: Natural Resource Utilization as Social ProcessDEVELOPMENT AND CHANGE, Issue 1 2000Anja Nygren This article analyses the changing role of forests and the practices of peasants toward them in a Costa Rican rural community, drawing on an analytical perspective of political ecology, combined with cultural interpretations. The study underlines the complex articulation of local processes and global forces in tropical forest struggles. Deforestation is seen as a process of development and power involving multiple social actors, from politicians and development experts to a heterogeneous group of local peasants. The local people are not passive victims of global challenges, but are instead directly involved in the changes concerning their production systems and livelihood strategies. In the light of historical changes in natural resource utilization, the article underlines the multiplicity of the causes of tropical deforestation, and the intricate links between global discourses on environment and development and local forest relations. [source] Distribution, abundance, and individual strategies: a multi-scale analysis of dasyurid marsupials in arid central AustraliaECOGRAPHY, Issue 3 2006Adele S. Haythornthwaite We investigated the effects of different environmental factors on the distribution and abundance of 6 species of dasyurid marsupials using a multiple-scale analysis. Data collected in the spinifex dunefields of the Simpson Desert, Australia, were analysed at 3 spatial scales spanning more than 5 orders of magnitude: "metasite" (covering an area of 1000,2000 km2), site (2,12 km2) and grid (0.01 km2). Temporal variability was also investigated, using data collected in March, April, and May in 4 consecutive years from 1997 to 2000. Both abiotic and biotic factors influenced the capture rates of different species at different times and spatial scales. At the coarsest spatial scale, Dasycercus cristicauda (mulgara) was consistently limited in its distribution by the intensity of rainfall, probably as an indirect result of increased grazing pressure from pastoral activity and a higher density of feral predators in high rainfall areas. However, at the finest spatial scale, this partly carnivorous species was scarce in areas of dense spinifex, perhaps because such habitats yield lowest returns during foraging, and was more common in areas where small invertebrate prey were abundant. Factors affecting the distribution of the most abundant dasyurid species in the study area, Sminthopsis youngsoni (lesser hairy-footed dunnart), could not be identified at any scale; we conclude that this reflects the opportunistic foraging strategies and flexible habitat requirements of this insectivorous species. Both Ningaui ridei (wongai ningaui) and Sminthopsis hirtipes (hairy-footed dunnart) were less abundant throughout the study region. For N. ridei, a spinifex specialist, predictors of occurrence could be identified only at the finest scale of analysis; at the grid level, a close positive association was detected in 2 of the 4 study years between capture rate and spinifex cover. For S. hirtipes, all 3 levels of spatial analysis revealed a negative association between capture rate and both rainfall and spinifex density. For the rarely-caught S. crassicaudata (fat-tailed dunnart) and Planigale tenuirostris (narrow-nosed planigale), no clear results were obtained at any spatial scale, and we interpret this to indicate that the study region represents sub-optimal habitat for these species. Given that different factors affected the distribution and abundance of dasyurids at different spatial scales over time, we conclude that a multiple-scale approach to population and community analysis is vital to accurately identify which environmental processes shape population and community dynamics. Understanding the interplay between regional and local processes will be crucial for management of existing species populations and for prediction of their distributions and abundances in future. [source] Macroecology of a host-parasite relationshipECOGRAPHY, Issue 1 2000Caryn C. Vaughn The larvae of freshwater mussels are obligate ectoparasites on fishes while adults are sedentary and benthic. Dispersal of mussels is dependent on the movement of fish hosts, a regional process, but growth and reproduction should be governed by local processes. Thus, mussel assemblage attributes should be predictable from the regional distribution and abundance of fishes. At a broad spatial scale in the Red River drainage, USA, mussel species richness and fish species richness were positively associated; maximum mussel richness was limited by fish richness, but was variable beneath that constraint. Measured environmental variables and the associated local fish assemblages each significantly accounted for the regional variation in mussel assemblages. Furthermore, mussel assemblages showed strong spatial autocorrelation. Variation partitioning revealed that pure fish effects accounted for 15.4% of the variation in mussel assemblages; pure spatial and environmental effects accounted for 16.1% and 7.8%, respectively. Shared variation among fish, space and environmental variables totaled 40%. Of this shared variation, 36.8% was associated with the fish matrix. Thus, the variation in mussel assemblages that was associated with the distribution and abundance of fishes was substantial (> 50%), indicating that fish community structure is an important determinant of mussel community structure. Although animals commonly disperse plants and, thus, influence the structure of plant communities, our results show a strong macroecological association between two disparate animal groups with one strongly affecting the assemblage structure of the other. [source] Phylogenetic beta diversity: linking ecological and evolutionary processes across space in timeECOLOGY LETTERS, Issue 12 2008Catherine H. Graham Abstract A key challenge in ecological research is to integrate data from different scales to evaluate the ecological and evolutionary mechanisms that influence current patterns of biological diversity. We build on recent attempts to incorporate phylogenetic information into traditional diversity analyses and on existing research on beta diversity and phylogenetic community ecology. Phylogenetic beta diversity (phylobetadiversity) measures the phylogenetic distance among communities and as such allows us to connect local processes, such as biotic interactions and environmental filtering, with more regional processes including trait evolution and speciation. When combined with traditional measures of beta diversity, environmental gradient analyses or ecological niche modelling, phylobetadiversity can provide significant and novel insights into the mechanisms underlying current patterns of biological diversity. [source] Differential routing of coexisting neuropeptides in vasopressin neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Marc Landry Abstract The functional implications of intraneuronal coexistence of different neuropeptides depend on their respective targeting to release sites. In the rat hypothalamic magnocellular neurons, we investigated a possible differential routing of the coexpressed galanin and vasopressin. The respective location of proteins and messengers was assessed with double immunogold and in situ hybridization combining confocal and electron microscope analysis. The various populations of labelled granules were quantitatively compared in three subcellular compartments: perikarya, local processes and posthypophyseal nerve endings. Three subpopulations of granules were detected in all three compartments, but their respective amount showed significant differences. Galanin alone was immunolocalized in some secretory granules, vasopressin alone in others, and both peptides in a third subpopulation of granules. The major part of the granules containing vasopressin, either alone or in association with galanin, is found in neurohypophyseal nerve endings. In contrast, galanin single-labelled granules represent the most abundant population in dendritic processes, while double-labelled granules are more numerous in perikarya. This indicates a preferential distribution of the two peptides in the different compartments of magnocellular neurons. Furthermore, galanin and vasopressin messenger RNAs were detected at different domains of the endoplasmic reticulum, suggesting that translation might also occur at different locations, thus leading to partial segregation of galanin and vasopressin cargoes between two populations of secretory granules. The present study provides, for the first time in mammals, evidence suggesting that galanin and vasopressin are only partly copackaged and undergo a preferential targeting toward dendrites or neurohypophysis, suggesting different functions, autocrine/paracrine and endocrine, respectively. [source] Differential routing of coexisting neuropeptides in vasopressin neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Marc Landry Abstract The functional implications of intraneuronal coexistence of different neuropeptides depend on their respective targeting to release sites. In the rat hypothalamic magnocellular neurons, we investigated a possible differential routing of the coexpressed galanin and vasopressin. The respective location of proteins and messengers was assessed with double immunogold and in situ hybridization combining confocal and electron microscope analysis. The various populations of labelled granules were quantitatively compared in three subcellular compartments: perikarya, local processes and posthypophyseal nerve endings. Three subpopulations of granules were detected in all three compartments, but their respective amount showed significant differences. Galanin alone was immunolocalized in some secretory granules, vasopressin alone in others, and both peptides in a third subpopulation of granules. The major part of the granules containing vasopressin, either alone or in association with galanin, is found in neurohypophyseal nerve endings. In contrast, galanin single-labelled granules represent the most abundant population in dendritic processes, while double-labelled granules are more numerous in perikarya. This indicates a preferential distribution of the two peptides in the different compartments of magnocellular neurons. Furthermore, galanin and vasopressin messenger RNAs were detected at different domains of the endoplasmic reticulum, suggesting that translation might also occur at different locations, thus leading to partial segregation of galanin and vasopressin cargoes between two populations of secretory granules. The present study provides, for the first time in mammals, evidence suggesting that galanin and vasopressin are only partly copackaged and undergo a preferential targeting toward dendrites or neurohypophysis, suggesting different functions, autocrine/paracrine and endocrine, respectively. [source] Temporal Coherence of Chlorophyll a during a Spring Phytoplankton Bloom in Xiangxi Bay of Three-Gorges Reservoir, ChinaINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 6 2009Yao-Yang Xu Abstract Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from ,0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Are local patterns of anthropoid primate diversity related to patterns of diversity at a larger scale?JOURNAL OF BIOGEOGRAPHY, Issue 6 2000M. J. Lawes Abstract Aims, (1) To determine the relationship between local and regional anthropoid primate species richness. (2) To establish the spatial and temporal scale at which the ultimate processes influencing patterns of primate species coexistence operate. Location Continental landmasses of Africa, South America and Asia (India to China, and all islands as far south as New Guinea). Methods, The local,regional species richness relationship for anthropoid primates is estimated by regressing local richness against regional richness (independent variable). Local richness is estimated in small, replicate local assemblages sampled in regions that vary in total species richness. A strong linear relationship is taken as evidence that local assemblages are unsaturated and local richness results from proportional sampling of the regional pool. An asymptotic curvilinear relationship is interpreted to reflect saturated communities, where strong biotic interactions limit local richness and local processes structure the species assemblage. As a further test of the assumption of local assemblage saturation, we looked for density compensation in high-density local primate assemblages. Results, The local,regional species richness relationship was linear for Africa and South America, and the slope of the relationship did not differ between the two continents. For Asia, curvilinearity best described the relationship between local and regional richness. Asian primate assemblages appear to be saturated and this is confirmed by density compensation among Asian primates. However, density compensation was also observed among African primates. The apparent assemblage saturation in Asia is not a species,area phenomenon related to the small size of the isolated islands and their forest blocks, since similar low local species richness occurs in large forests on mainland and/or peninsular Asia. Main conclusions In Africa and South America local primate assemblage composition appears to reflect the influence of biogeographic processes operating on regional spatial scales and historical time scales. In Asia the composition of primate assemblages are by-and-large subject to ecological constraint operating over a relatively small spatial and temporal scale. The possible local influence of the El Niño Southern Oscillations on the evolution and selection of life-history characteristics among Asian primates, and in determining local patterns of primate species coexistence, warrants closer inspection. [source] Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environmentsOIKOS, Issue 3 2004Paul S. Giller Recent experiments, mainly in terrestrial environments, have provided evidence of the functional importance of biodiversity to ecosystem processes and properties. Compared to terrestrial systems, aquatic ecosystems are characterised by greater propagule and material exchange, often steeper physical and chemical gradients, more rapid biological processes and, in marine systems, higher metazoan phylogenetic diversity. These characteristics limit the potential to transfer conclusions derived from terrestrial experiments to aquatic ecosystems whilst at the same time provide opportunities for testing the general validity of hypotheses about effects of biodiversity on ecosystem functioning. Here, we focus on a number of unique features of aquatic experimental systems, propose an expansion to the scope of diversity facets to be considered when assessing the functional consequences of changes in biodiversity and outline a hierarchical classification scheme of ecosystem functions and their corresponding response variables. We then briefly highlight some recent controversial and newly emerging issues relating to biodiversity-ecosystem functioning relationships. Based on lessons learnt from previous experimental and theoretical work, we finally present four novel experimental designs to address largely unresolved questions about biodiversity-ecosystem functioning relationships. These include (1) investigating the effects of non-random species loss through the manipulation of the order and magnitude of such loss using dilution experiments; (2) combining factorial manipulation of diversity in interconnected habitat patches to test the additivity of ecosystem functioning between habitats; (3) disentangling the impact of local processes from the effect of ecosystem openness via factorial manipulation of the rate of recruitment and biodiversity within patches and within an available propagule pool; and (4) addressing how non-random species extinction following sequential exposure to different stressors may affect ecosystem functioning. Implementing these kinds of experimental designs in a variety of systems will, we believe, shift the focus of investigations from a species richness-centred approach to a broader consideration of the multifarious aspects of biodiversity that may well be critical to understanding effects of biodiversity changes on overall ecosystem functioning and to identifying some of the potential underlying mechanisms involved. [source] Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inferenceOIKOS, Issue 3 2004Bradley J. Cardinale The number of studies examining how species diversity influences the productivity of ecosystems has increased dramatically in the past decade as concern about global loss of biodiversity has intensified. Research to date has greatly improved our understanding of how, when, and why species loss alters primary production in ecosystems. However, because experiments have been performed at rather small spatial and short temporal scales, it is unclear whether conclusions can be readily extrapolated to the broader scales at which natural communities are most likely to influence ecosystem functioning. Here we develop a simple patch-dynamics model to examine some of the scale-dependent and independent qualities of the diversity-productivity relationship. We first simulate a typical diversity-productivity experiment and show that the influence of species richness on productivity is temporally dynamic, growing stronger through successional time. This holds true irrespective of whether resource partitioning or a sampling effect is the underlying mechanism. We then increase the spatial scale of the simulation from individual patches to a region consisting of many patch types. Results suggest that the diversity-productivity relationship is not influenced by spatial scale per se, but that the mechanism producing the relationship can change from sampling effects within individual patches to resource partitioning across patch types composing the region. This change occurs even though model dynamics are the same at both scales, suggesting that sampling effects and resource partitioning can represent different descriptions of the same biological processes operating concurrently at differing scales of observation. Lastly, we incorporate regional processes of dispersal and disturbance into the model and show that these processes can amplify the effect of species richness on productivity, resulting in patterns not easily anticipated from experiments. We conclude that the relative control of community structure by local versus regional processes may be a primary determinant of the diversity-productivity relationship in natural ecosystems. Therefore, past experiments having focused only on local processes might not reflect patterns and processes underlying diversity-productivity relationships in communities where disturbance and dispersal regulate species biomasses. [source] |