Home About us Contact | |||
Lolium Perenne L. (lolium + perenne_l)
Selected AbstractsThe influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plantsFUNCTIONAL ECOLOGY, Issue 2 2007E. AYRES Summary 1Both foliar and root herbivory can alter the exudation of carbon from plant roots, which in turn can affect nitrogen availability in the soil. However, few studies have investigated the effects of herbivory on N fluxes from roots, which can directly increase N availability in the soil and uptake by neighbouring plants. Moreover, the combined effects of foliar and root herbivory on N fluxes remains unexplored. 2We subjected the legume white clover (Trifolium repens L.) to defoliation (through clipping) and root herbivory (by an obligate root-feeding nematode, Heterodera trifolii Goggart) to examine how these stresses individually, and simultaneously, affected the transfer of T. repens -derived N to neighbouring perennial ryegrass (Lolium perenne L.) plants using 15N stable-isotope techniques. We also examined the effects of defoliation and root herbivory on the size of the soil microbial community and the growth response of L. perenne. 3Neither defoliation nor root herbivory negatively affected T. repens biomass. On the contrary, defoliation increased root biomass (34%) and total shoot production by T. repens (100%). Furthermore, defoliation resulted in a fivefold increase in T. repens -derived 15N recovered in L. perenne roots, and increased the size of the soil microbial biomass (77%). In contrast, root herbivory by H. trifolii slightly reduced 15N transfer from T. repens to L. perenne when T. repens root 15N concentration was included as a covariate, and root herbivory did not affect microbial biomass. Growth of L. perenne was not affected by any of the treatments. 4Our findings demonstrate that defoliation of a common grassland legume can substantially increase the transfer of its N to neighbouring plants by directly affecting below-ground N fluxes. These finding require further examination under field conditions but, given the prevalence of N-limitation of plant productivity in terrestrial ecosystems, increased transfer of N from legumes to non-N-fixing species could alter competitive interactions, with implications for plant community structure. [source] Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytesFUNCTIONAL ECOLOGY, Issue 6 2000G. P. Cheplick Abstract 1Grass leaves are often inhabited by fungal endophytes that can enhance host growth. In some forage species, endophytes improve host resistance to, and recovery from, drought. 2Our objective was to determine if the growth of genotypes of Lolium perenne L. was improved by endophytes during recovery from drought. 3Thirteen infected genotypes were cloned into ramets. Half were treated with a systemic fungicide to eliminate the endophyte (E,); half were untreated and retained high endophyte levels (E+). In a glasshouse, half of all E, and E+ ramets were watered regularly, whilst half were exposed to a 2 week drought on two occasions, each followed by a 3 week recovery period. 4After the first drought and recovery period, endophytes significantly reduced tiller production in the drought-stressed group. 5After the second drought and recovery period, effects of drought on live leaf area and dry mass were highly dependent on host genotype, but not endophytes. The mean tiller mass of E+ ramets after drought was significantly less than that of watered E+ ramets, but this was not true in E, ramets. For six genotypes there was greater mass allocation to storage in the tiller bases of E, ramets after drought. 6This perennial ryegrass population showed marked genotypic variation in the ability to recover from drought stress, but endophytes played little or no role in this ability. For some host genotypes there may be a metabolic cost of harbouring endophytes during environmentally stressful conditions. [source] Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swardsGLOBAL CHANGE BIOLOGY, Issue 8 2004Manuel K. Schneider Abstract Effects of free-air carbon dioxide enrichment (FACE, 60 Pa pCO2) on plant growth as compared with ambient pCO2 (36 Pa) were studied in swards of Lolium perenne L. (perennial ryegrass) at two levels of N fertilization (14 and 56 g m,2 a,1) from 1993 to 2002. The objectives were to determine how plant growth responded to the availability of C and N in the long term and how the supply of N to the plant from the two sources of N in the soil, soil organic matter (SOM) and mineral fertilizer, varied over time. In three field experiments, 15N-labelled fertilizer was used to distinguish the sources of available N. In 1993, harvestable biomass under elevated pCO2 was 7% higher than under ambient pCO2. This relative pCO2 response increased to 32% in 2002 at high N, but remained low at low N. Between 1993 and 2002, the proportions and amounts of N in harvestable biomass derived from SOM (excluding remobilized fertilizer) were, at high N, increasingly higher at elevated pCO2 than at ambient pCO2. Two factorial experiments confirmed that at high N, but not at low N, a higher proportion of N in harvestable biomass was derived from soil (including remobilized fertilizer) following 7 and 9 years of elevated pCO2, when compared with ambient pCO2. It is suggested that N availability in the soil initially limited the pCO2 response of harvestable biomass. At high N, the limitation of plant growth decreased over time as a result of the stimulated mobilization of N from soil, especially from SOM. Consequently, harvestable biomass increasingly responded to elevated pCO2. The underlying mechanisms which contributed to the increased mobilization of N from SOM under elevated pCO2 are discussed. This study demonstrated that there are feedback mechanisms in the soil which are only revealed during long-term field experiments. Such investigations are thus, a prerequisite for understanding the responses of ecosystems to elevated pCO2 and N supply. [source] Genotypic variation in patterns of root distribution, nitrate interception and response to moisture stress of a perennial ryegrass (Lolium perenne L.) mapping populationGRASS & FORAGE SCIENCE, Issue 3 2007J. R. Crush Abstract Genotypic variation in patterns of root distribution, nitrate interception and response to moisture stress were assessed in both parents and 198 progeny of a perennial ryegrass (Lolium perenne L.) full-sibling mapping population. This was carried out in metre-deep tubes of sand culture in a glasshouse experiment. The proportion of root dry matter (DM) weight in the top 10 cm of sand ranged from 0·33 to 0·75 and values of log10(1 , K), where K is the constant for an exponential model relating root DM weight and root depth, also showed wide variation among genotypes. The proportion of a pulse of 15N recovered in whole plants ranged from 0·124 to 0·431. There was a positive linear correlation between the proportion of 15N recovered and plant total DM weight, but no relationship between nitrate interception and patterns of distribution of DM weight of roots. Some genotypes responded to moisture stress by increasing root growth, and in others root growth was inhibited. It is concluded that this below-ground variability in root variables may be an evolutionary adaptation by plant populations to survive heterogeneity in soil biotic and edaphic factors. [source] The relationship between tiller appearance in spring and contribution to dry-matter yield in perennial ryegrass (Lolium perenne L.) cultivars differing in heading dateGRASS & FORAGE SCIENCE, Issue 2 2005A. S. Laidlaw Abstract The relative contribution of tillers present in April and those appearing in consecutive periods in spring was assessed for perennial ryegrass cultivars in the three maturity groups (early, intermediate- and late-heading). Each group was represented by two diploid and one tetraploid cultivar each in plots in their third (2000) and fourth (2001) harvest years in three replicated blocks receiving an average of 325 kg N ha,1 and cut seven (in 2001) or eight (in 2000) times annually. ,Main' tillers and their daughters were marked with colour-coded PVC-covered wire loops in early April as were daughters which appeared in consecutive periods between harvests, the loop colour identifying the period of origin of the tiller. Tillers were harvested at cutting height (5 cm) before the plots were harvested and the herbage from tillers with the same colour code bulked per plot. Tillers were identified retrospectively as ,reproductive' if they had been decapitated at the previous harvest. Dry-matter yield was higher in the early than late-heading cultivars in April and early May but this was reversed in harvests in late May and June. The early heading group had a lower lamina content than the late-heading group during reproduction growth, both due to the reproductive tillers (mainly those which overwintered) having a lower leaf content and to their being fewer and smaller vegetative tillers during the reproductive phase than for the late-heading group. Turnover of tillers was high in spring due to decapitation of reproductive tillers and rapid post-flowering tillering. This was particularly pronounced in the early heading group which also had slightly more tillers marked in April which were subsequently decapitated than in the other maturity groups, i.e. 0·56 compared with 0·44 for the late-maturing group. Mean ratios of rate of death: rate of tillering for 3 years (1999,2001) for the early and late-heading groups were 0·8 and 0·4, respectively, for April,May and 1·1 and 2·4, respectively, for June indicating the different patterns in tiller turnover for the two extreme maturity groups. Information on tiller origin and contribution to yield can be used to refine tiller-based grass growth models. [source] Performance of white clover varieties combined in blends and alone when grown with perennial ryegrass under sheep and cattle grazingGRASS & FORAGE SCIENCE, Issue 1 2003T. A. Williams Abstract Two experiments were carried out to evaluate the performance of blends of three white clover (Trifolium repens L.) varieties in comparison with the component varieties and three other varieties sown individually in a mixture with perennial ryegrass (Lolium perenne L.). The plots were grazed rotationally in Experiment 1 by cattle and sheep and in Experiment 2 by sheep alone. In both experiments, the blend was composed of three medium-leaved varieties (AberDai, AberVantage and AberHerald), but with different relative contributions of the three varieties in the two experiments. Dry matter (DM) yields of white clover and perennial ryegrass were assessed in replicate plots for two years (1999 and 2000) after the establishment year. In Experiment 1, there was no significant difference between the DM yields of white clover or perennial ryegrass in either year. The decline in DM yield of white clover between years that was observed for some varieties was not found for the blend. In Experiment 2, significant differences were found in DM yields of white clover in both years. In 1999, AberDai had the highest DM yield. In 2000, AberHerald and AberVantage had the highest DM yields, and AberDai showed a decline in DM yield that was mirrored by the mean for all the white clover varieties. In both experiments, the blend did not show significantly higher DM yield than one or more of its components; indeed, in Experiment 2, it was significantly lower yielding than AberDai in 1999. However, where one component of the blend declined in DM yield between years, this was compensated for by an increase in the yield of another component. These preliminary findings suggest that the yield stability of blends may give them a potential role in agricultural practice. [source] Relationships between the yield of perennial ryegrass and of small-leaved white clover under cutting or continuous grazing by sheepGRASS & FORAGE SCIENCE, Issue 3 2001T. A. Williams Seven varieties or advanced breeding lines of white clover (Trifolium repens L.), all of small leaf size, were grown separately in mixtures with perennial ryegrass (Lolium perenne L.) in an experiment encompassing three harvest years. Harvestable dry-matter (DM) yield measurements were taken of these mixtures and of perennial ryegrass monocultures under two management regimes: cutting and continuous sheep grazing. Considerable differences were observed in the harvestable DM yields of white clover, perennial ryegrass and total yields of the mixtures between plots containing different white clover varieties. White clover yields were generally higher under cutting, and perennial ryegrass yields were higher under grazing. The difference between perennial ryegrass yield in monoculture and in mixture was variable. In the second harvest year, a significant interaction effect was seen between management and white clover variety for white clover yield but not for perennial ryegrass yield. The relationship between clover yield and grass yield differed between the two management regimes. Under cutting, a negative correlation was observed, indicative of competitive effects. However, under grazing, no such correlation was seen. Possible mechanisms underlying these outcomes are discussed. [source] How does the vertical and horizontal structure of a perennial ryegrass and white clover sward influence grazing?GRASS & FORAGE SCIENCE, Issue 2 2001P. Carrère Mixtures of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) sown in alternate rows or in a thoroughly mixed matrix were grazed by sheep, either continuously or during short grazing tests, and were used to investigate the influence of the vertical and horizontal components of the sward structure on defoliation by sheep. In an experiment under continuous grazing, the defoliation intensity was greater for white clover compared with perennial ryegrass leaves (0·80 and 0·58 respectively). In spring, perennial ryegrass leaves were more defoliated than white clover leaves, whereas the reverse was observed in summer. The ratio of the proportion of white clover to perennial ryegrass leaves grazed was negatively correlated with the difference between the surface height of the perennial ryegrass and white clover rows in spring. In both spring and summer, white clover leaves of the same extended leaf length had a higher proportion of them grazed than perennial ryegrass leaves. In another experiment, during short grazing tests with perennial ryegrass,white clover swards that were grazed at the same sward surface height and at the same white clover content as in the previous experiment, there were no significant differences in the proportion of white clover and perennial ryegrass leaves grazed between strips of the two species and thoroughly mixed structures. The proportion of white clover leaves grazed was higher than that of perennial ryegrass leaves. These results show that the differential defoliation by sheep of perennial ryegrass and white clover leaves varies according to their vertical distribution in the mixed canopy, but is little affected by their horizontal distribution. Even small differences in sward surface height between mixed perennial ryegrass and white clover can affect diet selection by sheep to a rather large extent. [source] Isolates of Microdochium nivale and M. majus Differentiated by Pathogenicity on Perennial Ryegrass (Lolium perenne L.) and in vitro Growth at Low TemperatureJOURNAL OF PHYTOPATHOLOGY, Issue 5 2006I. S. Hofgaard Abstract Pink snow mould is a serious disease on grasses and winter cereals in cold and temperate zones during winter. To better understand the basis for the variation in pathogenicity between different isolates of Microdochium nivale and M. majus and to simplify selection of highly pathogenic isolates to use when screening for resistance to pink snow mould in perennial ryegrass, we sought traits correlated with pathogenicity. Isolates of M. nivale were more pathogenic on perennial ryegrass than isolates of M. majus, as measured by survival and regrowth of perennial ryegrass after infection and incubation under simulated snow cover. Pathogenicity as measured by relative regrowth was highly correlated with fungal growth rate on potato dextrose agar (PDA) at 2°C. Measuring fungal growth on PDA therefore seems to be a relatively simple method of screening for potentially highly pathogenic isolates. In a study of a limited number of isolates, highly pathogenic isolates showed an earlier increase and a higher total specific activity of , -glucosidase, a cell wall-degrading enzyme, compared with less pathogenic isolates. None of the M. majus isolates was highly pathogenic on perennial ryegrass. Our results indicate biological differences between M. nivale and M. majus and thus strengthen the recently published sequence-based evidence for the elevation of these former varieties to species status. [source] Molecular genetics of fructan metabolism in perennial ryegrassPLANT BIOTECHNOLOGY JOURNAL, Issue 5 2005Jaye Chalmers Summary Fructans are the main storage carbohydrates of temperate grasses, sustaining regrowth immediately after defoliation, as well as contributing to the nutritive value of feed. Fructan metabolism is based on the substrate sucrose and involves fructosyltransferases (FTs) for biosynthesis and fructan exohydrolases (FEHs) for degradation. Sucrose is also utilized by invertases (INVs), which hydrolyse it into its constituent monosaccharides for use in metabolism. The isolation, molecular characterization, functional analysis, and phylogenetic relationships of genes encoding FTs, FEHs, and INVs from temperate grasses are reviewed, with an emphasis on perennial ryegrass (Lolium perenne L.). The roles these enzymes play in fructan accumulation and remobilization, and future biotechnological applications in molecular plant breeding are discussed. [source] Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth ratesPLANT CELL & ENVIRONMENT, Issue 6 2008MONIKA KAVANOVÁ ABSTRACT Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mm (high) or 1 mm (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h,1) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h,1). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation. [source] |