Home About us Contact | |||
Loading Reduction (loading + reduction)
Selected AbstractsSeasonal response of nutrients to reduced phosphorus loading in 12 Danish lakesFRESHWATER BIOLOGY, Issue 10 2005MARTIN SØNDERGAARD Summary 1.,Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2.,Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3.,Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non-significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic-coupling and the lack of stratification in shallow lakes. 4.,Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5.,These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis. [source] Lake responses to reduced nutrient loading , an analysis of contemporary long-term data from 35 case studiesFRESHWATER BIOLOGY, Issue 10 2005ERIK JEPPESEN Summary 1. This synthesis examines 35 long-term (5,35 years, mean: 16 years) lake re-oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 ,g L,1 before loading reduction), subtropical to temperate (latitude: 28,65°), and lowland to upland (altitude: 0,481 m). Shallow north-temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in-lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10,15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in-lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100,150 ,g L,1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re-oligotrophication. [source] Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations?FRESHWATER BIOLOGY, Issue 1 2005María A. González Sagrario Summary 1. The effect of total nitrogen (TN) and phosphorus (TP) loading on trophic structure and water clarity was studied during summer in 24 field enclosures fixed in, and kept open to, the sediment in a shallow lake. The experiment involved a control treatment and five treatments to which nutrients were added: (i) high phosphorus, (ii) moderate nitrogen, (iii) high nitrogen, (iv) high phosphorus and moderate nitrogen and (v) high phosphorus and high nitrogen. To reduce zooplankton grazers, 1+ fish (Perca fluviatilis L.) were stocked in all enclosures at a density of 3.7 individuals m,2. 2. With the addition of phosphorus, chlorophyll a and the total biovolume of phytoplankton rose significantly at moderate and high nitrogen. Cyanobacteria or chlorophytes dominated in all enclosures to which we added phosphorus as well as in the high nitrogen treatment, while cryptophytes dominated in the moderate nitrogen enclosures and the controls. 3. At the end of the experiment, the biomass of the submerged macrophytes Elodea canadensis and Potamogeton sp. was significantly lower in the dual treatments (TN, TP) than in single nutrient treatments and controls and the water clarity declined. The shift to a turbid state with low plant coverage occurred at TN >2 mg N L,1 and TP >0.13,0.2 mg P L,1. These results concur with a survey of Danish shallow lakes, showing that high macrophyte coverage occurred only when summer mean TN was below 2 mg N L,1, irrespective of the concentration of TP, which ranged between 0.03 and 1.2 mg P L,1. 4. Zooplankton biomass and the zooplankton : phytoplankton biomass ratio, and probably also the grazing pressure on phytoplankton, remained overall low in all treatments, reflecting the high fish abundance chosen for the experiment. We saw no response to nutrition addition in total zooplankton biomass, indicating that the loss of plants and a shift to the turbid state did not result from changes in zooplankton grazing. Shading by phytoplankton and periphyton was probably the key factor. 5. Nitrogen may play a far more important role than previously appreciated in the loss of submerged macrophytes at increased nutrient loading and for the delay in the re-establishment of the nutrient loading reduction. We cannot yet specify, however, a threshold value for N that would cause a shift to a turbid state as it may vary with fish density and climatic conditions. However, the focus should be widened to use control of both N and P in the restoration of eutrophic shallow lakes. [source] Lake restoration: successes, failures and long-term effectsJOURNAL OF APPLIED ECOLOGY, Issue 6 2007MARTIN SØNDERGAARD Summary 1Eutrophication constitutes a serious threat to many European lakes and many approaches have been used during the past 20,30 years to improve lake water quality. Results from the various lake restoration initiatives are diverse and the long-term effects are not well described. 2In this study we evaluated data from more than 70 restoration projects conducted mainly in shallow, eutrophic lakes in Denmark and the Netherlands. Special focus was given to the removal of zooplanktivorous and benthivorous fish, by far the most common internal lake measure. 3In more than half of the biomanipulation projects, Secchi depth increased and chlorophyll a decreased to less than 50% within the first few years. In some of the shallow lakes, total phosphorus and total nitrogen levels decreased considerably, indicating an increased retention or loss by denitrification. The strongest effects seemed to be obtained 4,6 years after the start of fish removal. 4The long-term effect of restoration initiatives can only be described for a few lakes, but data from biomanipulated lakes indicate a return to a turbid state within 10 years or less in most cases. One of reasons for the lack of long-term effects may be internal phosphorus loading from a mobile pool accumulated in the sediment. 5Synthesis and applications. Lake restoration, and in particular fish removal in shallow eutrophic lakes, has been widely used in Denmark and the Netherlands, where it has had marked effects on lake water quality in many lakes. Long-term effects (> 8,10 years) are less obvious and a return to turbid conditions is often seen unless fish removal is repeated. Insufficient external loading reduction, internal phosphorus loading and absence of stable submerged macrophyte communities to stabilize the clear-water state are the most probable causes for this relapse to earlier conditions. [source] |