Liver Cancer Cells (liver + cancer_cell)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Liver Cancer Cells

  • human liver cancer cell


  • Selected Abstracts


    Proteomic analysis of liver cancer cells treated with 5-Aza-2,-deoxycytidine (AZA),

    DRUG DEVELOPMENT RESEARCH, Issue 1 2009
    Shujun Bai
    Abstract 5-Aza-2,-deoxycytidine (AZA) is a potent inhibitor of DNA methylation that exhibits anti-tumor activity in a variety of tumor cells via reactivation of tumor suppressor genes. However, few studies have been done on the biological and clinical significance of AZA in human hepatocellular carcinoma. To identify potential genes that may be aberrantly methylated and confer growth advantage to neoplastic cells and to better understand the molecular mechanism(s) underlying AZA anti-tumor activity, a proteomics approach was used to annotate global gene expression changes of HepG2 cell line pre- and post-treatment with AZA. A total of 56 differentially expressed proteins were identified by 2D gel analysis, 48 of which were up-regulated while the remaining 8 were down regulated. Among the identified proteins, eight of these showed marked changed proteins, including seven up-regulated proteins: glutathione S-transferase P, protein DJ-1, peroxiredoxin-2, UMP-CMP kinase, cytochrome c-type heme lyase, enhancer of rudimentary homolog, profilin-1, and one down-regulated protein, heat-shock protein ,,1. The possible implication of these proteins in hepatocarcinogenesis is discussed. We tested two up-regulated proteins, glutathione S-transferase P and peroxiredoxin-2, using RT-PCR and their expression was consistent with the results obtained in the protein level. Both of these genes were methylated when methylation-specific PCR was used against their promoter regions. Following treatment with AZA, the gene promoter regions were found to be unmethylated, concomitant with overexpression of the proteins compared to HepG2 cells without treatment. These data provide useful information in evaluating the therapeutic potential of AZA for the treatment of HCC. Drug Dev Res 69, 2009. © 2009 Wiley-Liss, Inc. [source]


    The histone deacetylase inhibitor MS-275 induces p21WAF1/Cip1 expression in human Hep3B hepatoma cells

    DRUG DEVELOPMENT RESEARCH, Issue 2 2007
    Haiyuan Zhang
    Abstract MS-275 is a novel synthetic benzamide derivative histone deacetylase (HDAC) inhibitor, that has demonstrated antiproliferative activity in a variety of in vitro human cancer cell lines including breast, colon, lung, myeloma, ovary, pancreas, prostate, and leukemia. Currently, little information is available concerning the effects of MS-275 on liver cancer cells. In the current study, MS-275 was found to have potent actions against human hepatoma Hep3B cells including inhibition of cell proliferation and induction of apoptosis. MS-275 selectively up-regulated a cyclin-dependent kinase inhibitor, p21WAF1/Cip1 without alteration of p27WAF1. Expression of p21WAF1/Cip1 is considered to play a pivotal role in Hep3B cell growth arrest and induction of apoptosis. Induction of p21WAF1/Cip1 expression was accompanied by an accumulation of acetylated histones H3 and H4 associated specifically with p21WAF1/Cip1 gene. ChIP analysis revealed remarkable alterations in protein components bound to the promoter region of p21WAF1/Cip1 gene in response to MS-275 treatment. These included the degradation of HDAC1, HDAC3, and c-Myc, and as well as increased p300 and RNA polymerase II. The selective effect of MS-275 on the up-regulation of the p21WAF1/Cip1 gene whose expression was suppressed in the hepatoma cancer cell line indicated that it would be a very attractive approach in clinical liver cancer therapy. Drug Dev Res 68:61,70, 2007. © 2007 Wiley-Liss, Inc. [source]


    Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4,AKT,ATP-binding cassette G2 pathway,

    HEPATOLOGY, Issue 2 2010
    Xiao Qi Wang
    Chemoresistance presents a major obstacle to the efficacy of chemotherapeutic treatment of cancers. Using chemotherapeutic drugs to select drug-resistant cancer cells in hepatocellular carcinoma (HCC) and several other cancer cell lines, we demonstrate that chemoresistant cells displayed cancer stem cell features, such as increased self-renewal ability, cell motility, multiple drug resistance, and tumorigenicity. Octamer 4 (Oct4) messenger RNA (mRNA) levels were dramatically increased in chemoresistant cancer cells due to DNA demethylation regulation of Oct4. By functional study, Oct4 overexpression enhanced whereas Oct4 knockdown reduced liver cancer cell resistance to chemotherapeutic drugs in vitro and in xenograft tumors. It is known that the Oct4-TCL1-AKT pathway acts on embryonic stem cells and cancer stem cells in cell proliferation through inhibition of apoptosis. We further demonstrate that Oct4 overexpression induced activation of TCL1, AKT, and ABCG2 to mediate chemoresistance, which can be overcome by addition of the PI3K/AKT inhibitor; therefore, a direct pathway of Oct4-TCL1-AKT-ABCG2 or a combination of Oct4-TCL1-AKT with the AKT-ABCG2 pathway could be a potential new mechanism involved in liver cancer cell chemoresistance. Moreover, the clinical significance of the Oct4-AKT-ABCG2 pathway can be demonstrated in HCC patients, with a strong correlation of expression patterns in human HCC tumors. The role of the Oct4-AKT-ABCG2 axis in cancer cell chemoresistant machinery suggests that AKT pathway inhibition (PI3K inhibitors) not only inhibits cancer cell proliferation, but may also enhance chemosensitivity by target potential chemoresistant cells. Conclusion: Oct4, a transcriptional factor of pluripotent cells, can mediate chemoresistance through a potential Oct4-AKT-ABCG2 pathway. (HEPATOLOGY 2010;) [source]


    Upregulation of miR-23a,27a,24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 4 2008
    Shenglin Huang
    Abstract Transforming growth factor-beta (TGF-beta) plays a dual and complex role in human cancer. In this report, we observe a specific set of MicroRNAs (miRNAs) changed in response to TGF-beta in human hepatocellular carcinoma (HCC) cells by miRNA microarray screening. A cluster of miRNA, miR-23a,27a,24, is induced in an early stage by TGF-beta in Huh-7 cells. Knockdown of Smad4, Smad2 or Smad3 expression by RNA interference can attenuate the response of miR-23a,27a,24 to TGF-beta addition, indicating that this induction is dependent on Smad pathway. We also explore that miR-23a,27a,24 can function as an antiapoptotic and proliferation-promoting factor in liver cancer cells. In addition, expression of this miRNA cluster is found to be remarkably upregulated in HCC tissues versus normal liver tissues. These findings suggest a novel, alternative mechanism through which TGF-beta could induce specific miRNA expression to escape from tumor-suppressive response in HCC cells. © 2008 Wiley-Liss, Inc. [source]


    KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHCC97-H cells in vitro and in animal models

    LIVER INTERNATIONAL, Issue 1 2008
    Jian-min Yang
    Abstract Background: Downregulation of KAI1 gene expression has been found in many types of cancer cells and is closely related to cancer invasion and metastasis. This study was aimed at investigating the effects and possible underlying mechanisms of KAI1 gene on invasion and metastasis of human hepatocellular carcinoma (HCC). Methods: The invasive ability, visco-elastic properties and cell adhesion forces were analysed in different HCC cells originating from the MHCC97-H cell line transfected with either the sense or the antisense KAI1 expression plasmid. Tumuorigenicity, metastatic abilities, extracellular matrix (ECM) and intercellular adhesion molecule-1 (ICAM-1) expression were also evaluated in the nude mouse models of the xenografted and orthotopic liver cancer cells. Results: Compared with their parental cells, in the HCC cells transfected with the sense KAI1 gene, the invasive ability in vitro was significantly decreased (P<0.01); the cellular elastic coefficients K1, K2 and , were significantly higher (P<0.05); the cells adhesion forces to fibronectin were significantly lower (P<0.01). The sense KAI1 gene transfection into the cancer cells also inhibited their invasion and lung metastasis in the orthotopic liver cancer nude mice. However, the opposite changes were observed in the HCC cells transfected with the antisense KAI1 gene. KAI1 gene transfection also affected ECM and ICAM-1 expression in the transplanted liver cancer. Conclusion: The KAI1 gene plays an important role in the invasion and metastasis of human HCC and its upregulation in HCC cells suppresses their invasive and metastatic abilities. KAI1 gene functioned as a metastasis inhibitor by regulating the HCC cell biophysical behaviours including aggregation, adhesion, motility and visco-elastic properties. [source]


    Growth inhibitory effects of pegylated IFN ,-2b on human liver cancer cells in vitro and in vivo

    LIVER INTERNATIONAL, Issue 8 2006
    Hirohisa Yano
    Abstract: Purpose: We investigated the effects of pegylated IFN-,2b (PEG-IFN-,2b) on the growth of human liver cancer cells. Methods: The effect of PEG-IFN-,2b on the proliferation of 13 liver cancer cell lines was investigated in vitro. Chronological changes in growth and IFN-, receptor-2 (IFNAR-2) expression were monitored in hepatocellular carcinoma (HCC) cells (HAK-1B) cultured with PEG-IFN-,2b. After HAK-1B cells were transplanted into nude mice, various doses of PEG-IFN-,2b or IFN-,2b were administered, and tumor volume, weight, histology, and IFNAR-2 expression were examined. Results: PEG-IFN-,2b inhibited the growth of nine cell lines with apoptosis in a dose- and time-dependent manner. Continuous contact with PEG-IFN-,2b induced time-dependent growth inhibition and down-regulation of IFNAR-2 expression. PEG-IFN-,2b induced a dose-dependent decrease in tumor volume and weight, a significant increase of apoptotic cells, and a decrease in IFNAR-2 expression in the tumor. The clinical dose for chronic hepatitis C was also effective. The antitumor effect of PEG-IFN-,2b was significantly stronger than that of non-PEG-IFN-,2b in vivo. Conclusions: Continuous contact with PEG-IFN-,2b induces strong antitumor effects and the down-regulation of IFNAR-2 in HCC cells. The data suggest potential clinical application of PEG-IFN-,2b for the prevention and treatment of HCC. [source]


    Long-term ethanol exposure causes human liver cancer cells to become resistant to mitomycin C treatment through the inactivation of bad-mediated apoptosis,

    MOLECULAR CARCINOGENESIS, Issue 8 2010
    Ching-Shui Huang
    Abstract The aim of this study was to test whether long-term ethanol consumption confers therapeutic resistance to human liver cancer patients infected with hepatitis B virus (HBV). Chronic ethanol-treated cells were established by consecutively culturing a human hepatocellular carcinoma cell line, Hep 3B, which contains integrated HBV sequences, for 20,40 passages with or without 10,mM ethanol (designated as E20,E40 and C20,C40, respectively). Flow cytometry analysis demonstrated that a growth promoting effect of long-term ethanol treatment was induced in the E40 cells through preferential acceleration of S-phase in these cells. Lower protein expression levels of p16, p21/Cip1, and p27/Kip1 were detected in the ethanol-treated E40 cells. We further demonstrated that long-term ethanol-treated E40 cells develop drug resistance in response to mitomycin C (MMC) treatment (>8,µM). Immunoblot analysis revealed that caspase-8-mediated mitochondrial apoptotic signals (such as Bad) were inactivated in the MMC-resistant E40 cells. Immunoprecipitation experiments demonstrated that the sequestration of phosphorylated Bad (Ser-112) through its binding with 14-3-3 was detected more profoundly in the MMC-resistant E40 cells. Next, we examined the therapeutic efficacy of MMC (10,mg MMC/kg body weight, three times per week) in severe combined immunodeficient (SCID) mice bearing E40- and C40-xenografted tumors. Significant reductions (>3-fold) in tumor growth were detected in MMC-treated C40-xenografted mice. In vivo and in vitro studies demonstrated that AKT- and extracellular signal-regulated kinase (ERK)-mediated survival factors inhibited the Bad-induced mitochondrial apoptotic signals that were involved in E40 tumor cells and that conferred resistance to MMC. © 2010 Wiley-Liss, Inc. [source]


    Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells

    MOLECULAR CARCINOGENESIS, Issue 2 2001
    Shyr-Yi Lin
    Abstract Magnolol has been reported to have anticancer activity. In this study we found that treatment with 100 ,m magnolol induced apoptosis in cultured human hepatoma (Hep G2) and colon cancer (COLO 205) cell lines but not in human untransformed gingival fibroblasts and human umbilical vein endothelial cells. Our investigation of apoptosis in Hep G2 cells showed a sequence of associated intracellular events that included (a) increased cytosolic free Ca2+; (b) increased translocation of cytochrome c (Cyto c) from mitochondria to cytosol; (c) activation of caspase 3, caspase 8, and caspase 9; and (d) downregulation of bcl-2 protein. Pretreatment of the cells with the phospholipase C inhibitor 1-[6-[[(17,)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1 H -pyrrole-2,5-dione (U73122) or the intracellular chelator of Ca2+ 1,2-bis(2-aminophenoxy)ethane- N,N,N,,N, -tetraacetic acid acetoxymethyl ester (BAPTA/AM) inhibited the subsequent magnolol augmentation of [Ca2+]i and also the activation of caspase-8 and caspase-9, so that the occurrence of apoptosis in those cells was greatly reduced. Pretreatment of the cells with ZB4 (which disrupts the Fas response mechanism) also decreased the subsequent magnolol-induced caspase-8 activation and reduced the occurrence of apoptosis. We interpreted these findings to indicate that the above-listed sequence of intracellular events led to the apoptosis seen in Hep G2 cells and that [Ca2+]i, Cyto c, and Fas function as intracellular signals to coordinate those events. © 2001 Wiley-Liss, Inc. [source]


    Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells

    MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 7 2010
    Chi-Cheng Lu
    Abstract Anthraquinone compounds have been shown to induce apoptosis in different cancer cell types. Effects of chrysophanol, an anthraquinone compound, on cancer cell death have not been well studied. The goal of this study was to examine if chrysophanol had cytotoxic effects and if such effects involved apoptosis or necrosis in J5 human liver cancer cells. Chrysophanol induced necrosis in J5 cells in a dose- and time-dependent manner. Non-apoptotic cell death was induced by chrysophanol in J5 cells and was characterized by caspase independence, delayed externalization of phosphatidylserine and plasma membrane disruption. Blockage of apoptotic induction by a general caspase inhibitor (z-VAD-fmk) failed to protect cells against chrysophanol-induced cell death. The levels of reactive oxygen species production and loss of mitochondrial membrane potential (,,m) were also determined to assess the effects of chrysophanol. However, reductions in adenosine triphosphate levels and increases in lactate dehydrogenase activity indicated that chrysophanol stimulated necrotic cell death. In summary, human liver cancer cells treated with chrysophanol exhibited a cellular pattern associated with necrosis and not apoptosis. [source]