APX Activity (apx + activity)

Distribution by Scientific Domains


Selected Abstracts


Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves

PHYSIOLOGIA PLANTARUM, Issue 2 2002
José A. Hernández
In pea (Pisum sativum L.) plants the effect of short-term salt stress and recovery on growth, water relations and the activity of some antioxidant enzymes was studied. Leaf growth was interrupted by salt addition. However, during recovery, growth was restored, although there was a delay in returning to control levels. Salt stress brought about a decrease in osmotic potential and in stomatal conductance, but at 48 h and 24 h post-stress, respectively, both parameters recovered control values. In pea leaves, a linear increase in the Na+ concentration was observed in salt treated plants. In the recovered plants, a slight reduction in the Na+ concentration was observed, probably due to a dilution effect since the plant growth was restored and the total Na+ content was maintined in leaves after the stress period. A significant increase of SOD activity occurred after 48 h of stress and after 8 h of the recovery period (53% and 42%, respectively), and it reached control values at 24 h post-stress. APX activity did not change during the stress period, and after only 8 h post-stress it was increased by 48% with respect to control leaves. GR showed a 71% increase after 24 h of salt stress and also a significant increase was observed in the recovered plants. A strong increase of TBARS was observed after 8 h of stress (180% increase), but then a rapid decrease was observed during the stress period. Surprisingly, TBARS again increased at 8 h post-stress (78% increase), suggesting that plants could perceive the elimination of NaCl from the hydroponic cultures as another stress during the first hours of recovery. These results suggest that short-term NaCl stress produces reversible effects on growth, leaf water relations and on SOD and APX activities. This work also suggests that both during the first hours of imposition of stress and during the first hours of recovery an oxidative stress was produced. [source]


A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development

NEW PHYTOLOGIST, Issue 3 2007
Hong-Bin Li
Summary ,,Reactive oxygen species (ROS) play important roles in multiple physiological processes such as cellular signalling and stress responses, whereas, the hydrogen peroxide (H2O2) scavenging enzyme ascorbate peroxidase (APX) participates in the regulation of intracellular ROS levels. ,,Here, a cotton (Gossypium hirsutum) cytosolic APX1 (GhAPX1) was identified to be highly accumulated during cotton fibre elongation by proteomic analysis. GhAPX1 cDNA contained an open reading frame of 753-bp encoding a protein of 250 amino acid residues. When GhAPX1 was expressed in Escherichia coli, the purified GhAPX1 was a dimer consisting of two identical subunits with a molecular mass of 28 kDa. GhAPX1 showed the highest substrate specificity for ascorbate. ,,Quantitative real-time polymerase chain reaction (PCR) analyses showed that GhAPX1 was highly expressed in wild-type 5-d postanthesis fibres with much lower transcript levels in the fuzzless-lintless mutant ovules. Treating in vitro cultured wild-type cotton ovules with exogenous H2O2 or ethylene induced the expression of GhAPX1 and hence increased total APX activity proportionally, followed by extended fibre cell elongation. ,,These data suggest that GhAPX1 expression is upregulated in response to an increase in cellular H2O2 and ethylene. GhAPX1 encodes a functional enzyme that is involved in hydrogen peroxide homeostasis during cotton fibre development. [source]


Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves

PHYSIOLOGIA PLANTARUM, Issue 2 2002
José A. Hernández
In pea (Pisum sativum L.) plants the effect of short-term salt stress and recovery on growth, water relations and the activity of some antioxidant enzymes was studied. Leaf growth was interrupted by salt addition. However, during recovery, growth was restored, although there was a delay in returning to control levels. Salt stress brought about a decrease in osmotic potential and in stomatal conductance, but at 48 h and 24 h post-stress, respectively, both parameters recovered control values. In pea leaves, a linear increase in the Na+ concentration was observed in salt treated plants. In the recovered plants, a slight reduction in the Na+ concentration was observed, probably due to a dilution effect since the plant growth was restored and the total Na+ content was maintined in leaves after the stress period. A significant increase of SOD activity occurred after 48 h of stress and after 8 h of the recovery period (53% and 42%, respectively), and it reached control values at 24 h post-stress. APX activity did not change during the stress period, and after only 8 h post-stress it was increased by 48% with respect to control leaves. GR showed a 71% increase after 24 h of salt stress and also a significant increase was observed in the recovered plants. A strong increase of TBARS was observed after 8 h of stress (180% increase), but then a rapid decrease was observed during the stress period. Surprisingly, TBARS again increased at 8 h post-stress (78% increase), suggesting that plants could perceive the elimination of NaCl from the hydroponic cultures as another stress during the first hours of recovery. These results suggest that short-term NaCl stress produces reversible effects on growth, leaf water relations and on SOD and APX activities. This work also suggests that both during the first hours of imposition of stress and during the first hours of recovery an oxidative stress was produced. [source]


Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica)

PHYSIOLOGIA PLANTARUM, Issue 4 2000
N. Sreenivasulu
The modulation of antioxidant components was comparatively analysed in a salt-tolerant (cv. Prasad) and salt-sensitive (cv. Lepakshi) cultivar of foxtail millet (Setaria italica L.) under different NaCl concentrations. Under conditions of salt stress, the salt-tolerant cultivar exhibited increased total superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity, whereas both enzyme activities decreased in acutely salt-stressed seedlings of the sensitive cultivar. At 200 mM NaCl, the tolerant foxtail millet cultivar responded with induction of cytosolic Cu/Zn-SOD and the Mn-SOD isoform at the protein level. The induced accumulation of the cytosolic Cu/Zn-SOD protein/activity is positively correlated with an elevated level of the cytosolic APX gene activity. The elevated cytosolic Cu/Zn-SOD and cytosolic APX activity correlates with an induced accumulation of their transcripts. Tolerant 5-day-old seedlings grown during high salinity treatment (200 mM NaCl) contained a lower amount of Na+ ions and showed a lower electrolyte leakage than sensitive seedlings. In conclusion, our comparative studies indicate that salt-induced oxidative tolerance is conferred by an enhanced compartment-specific activity of the antioxidant enzymes in response to compartment-specific signals. [source]


Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance

PLANT BREEDING, Issue 4 2009
Y-J. Li
Abstract Ascorbate peroxidase (APX) plays an important role in the metabolism of hydrogen peroxide in higher plants. We studied the effect of over-expressing a Populus peroxisomal ascorbate peroxidase (PpAPX) gene under the control of the cauliflower mosaic virus 35S promoter or the rd29 promoter in transgenic tobacco. High levels of PpAPX gene expression were observed in 35S-PpAPX transgenic plants, with a 50% increase in APX activity. The constitutive expression of PpAPX in the tobacco exhibited no morphological abnormalities, while significantly increased root growth was observed in transgenic plants, when compared to control plants. Several independently transformed lines were propagated and evaluated for resistance to methyl viologen (MV), drought and salt stress. Visual assessment of transgenic and control lines exposed to MV (50 or 100 ,mol) confirmed that over-expression of APX minimized leaf damage. APX activity was nearly 80% higher in the leaves of transgenic plants in response to drought or salt stresses. Moreover, the transgenic tobacco also showed significantly improved drought resistance and salt tolerance at the vegetative stage. RNA blot analysis indicated that the PpAPX transcript level was very low under normal growing conditions in rd29Ap-PpAPX plants, but clearly increased under drought stress. Our results show that PpAPX does not play a significant role under normal growing conditions, but did ameliorate oxidative injury under abiotic stress. The Ad29 promoter should be used as an inducible promoter in transgenic works. [source]