Home About us Contact | |||
Apoptotic Cascade (apoptotic + cascade)
Selected AbstractsViability study of HL60 cells in contact with commonly used microchip materialsELECTROPHORESIS, Issue 24 2006Floor Wolbers Abstract This paper presents a study in which different commonly used microchip materials (silicon oxide, borosilicate glass, and PDMS) were analyzed for their effect on human promyelocytic leukemic (HL60) cells. Copper-coated silicon was analyzed for its toxicity and therefore served as a positive control. With quantitative PCR, the expression of the proliferation marker Cyclin D1 and the apoptosis marker tissue transglutaminase were measured. Flow cytometry was used to analyze the distribution through the different phases of the cell cycle (propidium iodide, PI) and the apoptotic cascade (Annexin V in combination with PI). All microchip materials, with the exception of Cu, appeared to be suitable for HL60 cells, showing a ratio apoptosis/proliferation (Rap) comparable to materials used in conventional cell culture (polystyrene). These results were confirmed with cell cycle analysis and apoptosis studies. Precoating the microchip material surfaces with serum favor the proliferation, as demonstrated by a lower Rap as compared to uncoated surfaces. The Cu-coated surface appeared to be toxic for HL60 cells, showing over 90% decreased viability within 24,h. From these results, it can be concluded that the chosen protocol is suitable for selection of the cell culture material, and that the most commonly used microchip materials are compatible with HL60 culturing. [source] PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of IK in the anti-apoptotic action of PACAPEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2004Y. A. Mei Abstract Activation of potassium (K+) currents plays a critical role in the control of programmed cell death. Because pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to inhibit the apoptotic cascade in the cerebellar cortex during development, we have investigated the effect of PACAP on K+ currents in cultured cerebellar granule cells using the patch-clamp technique in the whole-cell configuration. Two types of outward K+ currents, a transient K+ current (IA) and a delayed rectifier K+ current (IK) were characterized using two different voltage protocols and specific inhibitors of K+ channels. Application of PACAP induced a reversible reduction of the IK amplitude, but did not affect IA, while the PACAP-related peptide vasoactive intestinal polypeptide had no effect on either types of K+ currents. Repeated applications of PACAP induced gradual attenuation of the electrophysiological response. In the presence of guanosine 5,-[,thio]triphosphate (GTP,S), PACAP provoked a marked and irreversible IK depression, whereas cell dialysis with guanosine 5,-[,thio]diphosphate GDP,S totally abolished the effect of PACAP. Pre-treatment of the cells with pertussis toxin did not modify the effect of PACAP on IK. In contrast, cholera toxin suppressed the PACAP-induced inhibition of IK. Exposure of granule cells to dibutyryl cyclic adenosine monophosphate (dbcAMP) mimicked the inhibitory effect of PACAP on IK. Addition of the specific protein kinase A inhibitor H89 in the patch pipette solution prevented the reduction of IK induced by both PACAP and dbcAMP. PACAP provoked a sustained increase of the resting membrane potential in cerebellar granule cells cultured either in high or low KCl-containing medium, and this long-term depolarizing effect of PACAP was mimicked by the IK specific blocker tetraethylammonium chloride (TEA). In addition, pre-incubation of granule cells with TEA suppressed the effect of PACAP on resting membrane potential. TEA mimicked the neuroprotective effect of PACAP against ethanol-induced apoptotic cell death, and the increase of caspase-3 activity observed after exposure of granule cells to ethanol was also significantly inhibited by TEA. Taken together, the present results demonstrate that, in rat cerebellar granule cells, PACAP reduces the delayed outward rectifier K+ current by activating a type 1 PACAP (PAC1) receptor coupled to the adenylyl cyclase/protein kinase A pathway through a cholera toxin-sensitive Gs protein. Our data also show that PACAP and TEA induce long-term depolarization of the resting membrane potential, promote cell survival and inhibit caspase-3 activity, suggesting that PACAP-evoked inhibition of IK contributes to the anti-apoptotic effect of the peptide on cerebellar granule cells. [source] Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid poresFEBS JOURNAL, Issue 5 2006Ana J. García-Sáez Proteins of the B-cell lymphoma protein 2 (Bcl2) family are key regulators of the apoptotic cascade, controlling the release of apoptotic factors from the mitochondrial intermembrane space. A helical hairpin found in the core of water-soluble folds of these proteins has been reported to be the pore-forming domain. Here we show that peptides including any of the two ,-helix fragments of the hairpin of Bcl2 associated protein X (Bax) can independently induce release of large labelled dextrans from synthetic lipid vesicles. The permeability promoted by these peptides is influenced by intrinsic monolayer curvature and accompanied by fast transbilayer redistribution of lipids, supporting a toroidal pore mechanism as in the case of the full-length protein. However, compared with the pores made by complete Bax, the pores made by the Bax peptides are smaller and do not need the concerted action of tBid. These data indicate that the sequences of both fragments of the hairpin contain the principal physicochemical requirements for pore formation, showing a parallel between the permeabilization mechanism of a complex regulated protein system, such as Bax, and the much simpler pore-forming antibiotic peptides. [source] Internucleosomal DNA cleavage in apoptotic WEHI 231 cells is mediated by a chymotrypsin-like proteaseGENES TO CELLS, Issue 11 2004Jernej Murn Although several lines of evidence support a role for serine proteases in apoptosis, little is known about the mechanisms involved. In the present study, we have examined the apoptosis-inducing potential and dissected the death-signalling pathways of N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N-tosyl-L-lysine chloromethyl ketone (TLCK), inhibitors of chymotrypsin- and trypsin-like proteases, respectively. Our results designate two distinct roles for serine proteases. Firstly, we show that both inhibitors induce biochemical and morphological characteristics of apoptosis, including proteolysis of poly(ADP-ribose) polymerase 1 (PARP-1) and inhibitor of caspase-activated DNase (ICAD), as well as mitochondrial dysfunction, and that their action is abrogated by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (z-VAD.fmk). These results suggest that inhibition of anti-apoptotic serine proteases governs the onset of the caspase-dependant apoptotic cascade. Secondly, we also demonstrate the involvement of a serine protease in the terminal stage of apoptosis. We showed that chymotrypsin-like protease activity is required for internucleosomal DNA fragmentation in apoptotic cells. Hence, DNA fragmentation is abrogated in TPCK-pre-treated WEHI 231 cells undergoing apoptosis triggered either by anti-IgM or TLCK. These results indicate that internucleosomal DNA cleavage in apoptotic cells is mediated by a chymotrypsin-like protease. [source] ,-Arrestin 2 regulates toll-like receptor 4-mediated apoptotic signalling through glycogen synthase kinase-3,IMMUNOLOGY, Issue 4 2010Hui Li Summary Toll-like receptor 4 (TLR4), a key member of the TLR family, has been well characterized by its function in the induction of inflammatory products of innate immunity. However, the involvement of TLR4 in a variety of apoptotic events by an unknown mechanism has been the focus of great interest. Our investigation found that TLR4 promoted apoptotic signalling by affecting the glycogen synthase kinase-3, (GSK-3,) pathway in a serum-deprivation-induced apoptotic paradigm. Serum deprivation induces GSK-3, activation in a pathway that leads to subsequent cell apoptosis. Intriguingly, this apoptotic cascade is amplified in presence of TLR4 but greatly attenuated by ,-arrestin 2, another critical molecule implicated in TLR4-mediated immune responses. Our data suggest that the association of ,-arrestin 2 with GSK-3, contributes to the stabilization of phospho-GSK-3,, an inactive form of GSK-3,. It becomes a critical determinant for the attenuation of TLR4-initiated apoptosis by ,-arrestin 2. Taken together, we demonstrate that the TLR4 possesses the capability of accelerating GSK-3, activation thereby deteriorating serum-deprivation-induced apoptosis; ,-arrestin 2 represents an inhibitory effect on the TLR4-mediated apoptotic cascade, through controlling the homeostasis of activation and inactivation of GSK-3,. [source] The role of mitochondria, cytochrome c and caspase-9 in embryonic lens fibre cell denucleationJOURNAL OF ANATOMY, Issue 2 2002E. J. Sanders Abstract During the differentiation of secondary lens fibre cells from the lens epithelium, the fibre cells lose all of their cytoplasmic organelles as well as their nuclei. The fibre cells, containing crystallins, which confer optical clarity, then persist in the adult lens. The process of denucleation of these cells has been likened to an apoptotic event which is not followed by the plasma membrane changes that are characteristic of apoptosis. We have examined the expression and subcellular translocation of molecules of the apoptotic cascade in differentiating lens epithelial cells in culture. In this culture system, the epithelial cells differentiate into lentoids composed of lens fibre cells. We find that caspase-9, which is expressed and activated before embryonic day 12 in intact lenses, is localized in the cytosol outside mitochondria in non-differentiating cultured cells. In lentoid cells, caspase-9 migrates into mitochondria after the latter undergo a membrane permeability transition that is characteristic of apoptotic cells. At the same time, caspase-9 co-localizes with cytochrome c in the cytosol. The cytochrome c is apparently released from the mitochondria in lentoid cells after the mitochondrial membrane permeability transition and during the period of nuclear shrinkage. Also during this time, the mitochondria aggregate around the degenerating nuclei. Cytochrome c disappears rapidly, while mitochondrial breakdown occurs approximately coincident with the disappearance of the nuclei, but mitochondrial remnants persist together with cytochrome c oxidase, which is a mitochondrial marker protein. Apaf-1, another cytosolic protein of the apoptotic cascade, also migrates to the permeabilized mitochondria and also co-localizes with caspase-9 and cytochrome c in the cytosol or mitochondria of denucleating cells, thus providing evidence for the formation of an ,apoptosome' in these cells, as in apoptotic cells. At no time did we observe the translocation of molecules between cytoplasmic compartments and the nucleus in differentiating lentoid cells. We suggest that the uncoupling of nuclear and membrane apoptotic events in these cells may be due to the early permeability changes in the mitochondria, resulting in the loss of mitochondrial signalling molecules, or to the failure of molecules to migrate to the nucleus in these cells, thus failing to activate nuclear-plasma membrane signalling pathways. [source] Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa CellJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008Yan Lu Abstract Methylene blue (MB), a widely studied reagent, is investigated in this work for its usage in photodynamic therapy (PDT). PDT has been proved to be highly effective in the treatment of different types of cancers. Previous studies showed MB has both high affinity for mitochondria and high photodynamic efficiency. To elucidate the effects of MB in PDT, we analyzed PDT-induced apoptosis in HeLa cells by introducing different doses of MB into the culture media. Our data showed that MB-mediated PDT triggered intense apoptotic cell death through a series of steps, beginning with photochemical generation of reactive oxygen species. The release of cytochrome c and activation of caspase-3 indicated that MB-PDT-mediated apoptosis in HeLa cells was executed by the mitochondria-dependent apoptotic pathway. Importantly, proteomic studies confirmed that expression levels of several mitochondrial proteins were altered in MB-PDT-induced apoptosis, including TRAP1, mitochondrial elongation factor Tu and peroxiredoxin 3 isoform b. Western blot data showed that phosphorylation of ERK1/2 and PKA were reduced in MB-PDT treated cells, indicating several signal molecules participating in this apoptotic cascade. Moreover, MB-PDT induced an increase in the strength of interaction between Bcl-xL and dephosphorylated Bad. This led to loss of the pro-survival function of Bcl-xL and resulted in mitochondria-mediated apoptosis. This study provides solid evidence of a strong induction by MB-PDT of a mitochondria-dependent apoptosis cascade in HeLa cells. J. Cell. Biochem. 105: 1451,1460, 2008. © 2008 Wiley-Liss, Inc. [source] Neuropathy-induced apoptosis: Protective effect of physostigmineJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2009L. Di Cesare Mannelli Abstract Traumatic, infectious, metabolic, and chemical noxa to the nervous system are the etiology of a crippling disease generally termed neuropathy. Motor disorders, altered sensibility, and pain are the pathognomonic traits. Cellular alterations induced by this chronic pathology include mitochondrial dysfunctions that lead to the activation of the apoptotic cascade. Energy imbalance can compromise the maintenance of mitochondrial membrane potential, furthering the release of cytochrome C and the subsequent cleavage and activation of caspases. Chronic constriction injury (CCI) of the rat sciatic nerve is a neuropathy model able to induce a strong mitochondrial impairment with a consequent apoptotic induction. In this model, the acetylcholinesterase inhibitor physostigmine is administered at 0.125 mg/kg i.p. (twice per day) starting from the operation and for 15 days after. The cholinergic activation reduces cytosolic levels of cytochrome C, suggesting an improved stability of the mitochondrial membrane, and the expression level of the active caspase 3 fragments (19, 16 kDa) is reduced significantly with respect to saline treatment. Accordingly, physostigmine impairs caspase 3 protease activity. In fact, the target of the activated caspase 3, the 89-kDa PARP fragment, is significantly less expressed in the ligated nerve of physostigmine-treated rats, reaching levels that are comparable to those in the contralateral unligated nerve. Finally, this natural acetylcholinesterase inhibitor reduces DNA fragmentation both in the proximal and in the distal parts of the nerve. This protection correlates with the induction of XIAP. Therefore, apoptosis, central to tissue degeneration, is prevented by repeated physostigmine treatment of CCI animals. © 2009 Wiley-Liss, Inc. [source] PKC-mediated secretion of death factors in LNCaP prostate cancer cells is regulated by androgensMOLECULAR CARCINOGENESIS, Issue 3 2009Liqing Xiao Abstract Activation of PKC, in androgen-dependent LNCaP prostate cancer cells leads to apoptosis via the activation of p38 MAPK and JNK cascades. We have recently shown that treatment of LNCaP cells with phorbol 12-myristate 13-acetate (PMA) leads to a PKC,-mediated autocrine release of death factors, including the cytokines TNF, and TRAIL, and that conditioned medium (CM) collected from PMA-treated LNCaP cells promotes the activation of the extrinsic apoptotic cascade. Interfering with this autocrine loop either at the level of factor release or death receptor activation/signaling markedly impaired the PMA apoptotic response. In the present study we show that this PKC,-dependent autocrine mechanism is greatly influenced by androgens. Indeed, upon androgen depletion, which down-regulates PKC, expression, TNF, and TRAIL mRNA induction and release by PMA are significantly diminished, resulting in a reduced apoptogenic activity of the CM and an impaired ability of the CM to activate p38 MAPK and JNK. These effects can be rescued by addition of the synthetic androgen R1881. Furthermore, RNAi depletion of the androgen-receptor (AR) from LNCaP cells equally impaired PMA responses, suggesting that PKC-mediated induction of death factor secretion and apoptosis in LNCaP prostate cancer cells are highly sensitive to hormonal control. © 2008 Wiley-Liss, Inc. [source] Cover Picture , Mol.MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 6 2009Nutr. Regular issues provide a wide range of research and review articles covering all aspects of Molecular Nutrition & Food Research. Selected topics of issue 6 are: Quercetin-induced apoptotic cascade in cancer cells: Antioxidant versus estrogen receptor ,-dependent mechanisms. Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts Oxidative stress due to anesthesia and surgical trauma: Importance of early enteral nutrition [source] Treponema denticola immunoinhibitory protein induces irreversible G1 arrest in activated human lymphocytesMOLECULAR ORAL MICROBIOLOGY, Issue 3 2004W. Lee Oral spirochetes may contribute to the pathogenesis of a number of disorders including periodontal and periradicular diseases; however, the mechanism (s) by which these organisms act to cause disease is unknown. We have previously shown that extracts of the oral spirochete, Treponema denticola, contain an immunosuppressive protein (Sip) which impairs human lymphocyte proliferation. The objective of this study was to determine the mechanism by which Sip alters the proliferative response of lymphocytes. Human T-cells were activated by PHA in the presence or absence of Sip and cell cycle progression was assessed by flow cytometry. Cell cycle distribution was based upon DNA, RNA and protein content as well as expression of the activation markers; CD69 and IL-2R. Seventy-two hours following activation with PHA, cells were found in the G0, G1, S and G2/M phases of the cell cycle. In contrast, pretreatment with Sip resulted in a significant reduction of cells in the S and G2/M phases and a concomitant increase in the G1 phase. Sip did not alter the expression of the early activation markers CD69 and CD25R. To determine if G1 arrest resulted in activation of the checkpoint and cell death, we also monitored Sip-treated cells for apoptosis. Indeed, treatment with Sip resulted in both DNA fragmentation and caspase activation after 96 h. Our results indicate that Sip induces G1 arrest in human T-cells and, furthermore, that the arrest is irreversible, culminating in activation of the apoptotic cascade. We propose that if cell cycle arrest occurs in vivo, it may result in local and/or systemic immunosuppression and thereby enhance the pathogenicity of spirochetes and/or that of other opportunistic organisms. [source] Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibitionNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2005S. Sathasivam There is increasing evidence that apoptosis or a similar programmed cell death pathway is the mechanism of cell death responsible for motor neurone degeneration in amyotrophic lateral sclerosis. Knowledge of the relative importance of different caspases in the cell death process is at present incomplete. In addition, there is little information on the critical point of the death pathway when the process of dying becomes irreversible. In this study, using the well-established NSC34 motor neurone-like cell line stably transfected with empty vector, normal or mutant human Cu-Zn superoxide dismutase (SOD1), we have characterized the activation of the caspase cascade in detail, revealing that the activation of caspases-9, -3 and -8 are important in motor neurone death and that the presence of mutant SOD1 causes increased activation of components of the apoptotic cascade under both basal culture conditions and following oxidative stress induced by serum withdrawal. Activation of the caspases identified in the cellular model has been confirmed in the G93A SOD1 transgenic mice. Furthermore, investigation of the effects of anti-apoptotic neuroprotective agents including specific caspase inhibitors, minocycline and nifedipine, have supported the importance of the mitochondrion-dependent apoptotic pathway in the death process and revealed that the upstream caspase cascade needs to be inhibited if useful neuro-protection is to be achieved. [source] Onset of Apoptosis in the Cystic Duct During Metamorphosis of a Japanese Lamprey, Lethenteron reissneriTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 7 2010Mayako Morii Abstract A nonparasitic lamprey in Japan, Lethenteron reissneri, stops feeding prior to the commencement of metamorphosis. Resumption of feeding cannot take place due to major alterations in the digestive system, including loss of the gall bladder (GB) and biliary tree in the liver. This degeneration of bile ducts is considered to depend on programmed cell death or apoptosis, but molecular evidence of apoptosis remains lacking. Using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and immunohistochemistry with an antibody against active caspase-3, we showed that epithelial cells of the cystic duct (CD) and GB became TUNEL-positive by the early metamorphosing stage. Immunohistochemical staining of active caspase-3, a key mediator in the apoptotic cascade, showed that the apoptotic signal was initiated in the region around the CD in the late larval phase. In later stages, active caspase-3-positive epithelial cells were also observed in the large intrahepatic bile duct (IHBD) and peripheral small IHBDs. At the early metamorphosing stage, bile canaliculi between hepatocytes were dilated and displayed features resembling canaliculi in cholestasis. Onset of apoptosis around the CD, which is the pathway for the storage of bile juice, and progression of apoptosis towards the large IHBD, which is the pathway for the secretion of bile juice, may lead to temporary intrahepatic cholestasis. The present study represents the first precise spatial and temporal analysis of apoptosis in epithelial cells of the biliary tract system during metamorphosis of any lamprey species. Anat Rec 293:1155,1166, 2010. © 2010 Wiley-Liss, Inc. [source] Bim,Bcl-2 homology 3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosisARTHRITIS & RHEUMATISM, Issue 2 2010John C. Scatizzi Objective Rheumatoid arthritis (RA) is a destructive autoimmune disease characterized by an increased inflammation in the joint. Therapies that activate the apoptotic cascade may have potential for use in RA; however, few therapeutic agents fit this category. The purpose of this study was to examine the potential of Bim, an agent that mimics the action of Bcl-2 homology 3 (BH3) domain,only proteins that have shown success in preclinical studies of cancer, in the treatment of autoimmune disease. Methods Synovial tissues from RA and osteoarthritis patients were analyzed for the expression of Bim and CD68 using immunohistochemistry. Macrophages from Bim,/, mice were examined for their response to lipopolysaccharide (LPS) using flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and immunoblotting. Bim,/, mice were stimulated with thioglycollate or LPS and examined for macrophage activation and cytokine production. Experimental arthritis was induced using the K/BxN serum,transfer model. A mimetic peptide corresponding to the BH3 domain of Bim (TAT-BH3) was administered as a prophylactic agent and as a therapeutic agent. Edema of the ankles and histopathologic analysis of ankle tissue sections were used to determine the severity of arthritis, its cellular composition, and the degree of apoptosis. Results The expression of Bim was reduced in RA synovial tissue as compared with controls, particularly in macrophages. Bim,/, macrophages displayed elevated expression of markers of inflammation and secreted more interleukin-1, following stimulation with LPS or thioglycollate. TAT-BH3 ameliorated arthritis development, reduced the number of myeloid cells in the joint, and enhanced apoptosis without inducing cytotoxicity. Conclusion These data demonstrate that BH3 mimetic therapy may have significant potential for the treatment of RA. [source] The role of HIF-1 alfa in apoptosis and proliferative retinopathyACTA OPHTHALMOLOGICA, Issue 2009R FERNANDES Purpose In diabetic retinal capillaries, the earlier morphological changes include pericyte loss and acellular capillary formation. These processes are regulated by interactions among a number of pro- and antiangiogenic factors, including vascular endothelial growth factor (VEGF) and Angiopoietin-2 (Ang-2). We hypothesize that increased levels of methylglyoxal (MGO) in RPE cells disrupts the balance of VEGF/Ang-2 promoting endothelial cell death and vessel regression. Methods Rats with moderate T2D, and retinal cell lines of epithelium (RPE) and endothelium (EC) were used. MGO levels were determined by HPLC. Immunohistochemical analysis was performed in retinas stained for VEGF and Ang-2. RPE cells were incubated with MGO in hypoxic conditions and the level of VEGF and Ang-2 was assessed by ELISA. EC were subsequently treated with the pre-conditioned media of the RPE cells. Cell death was determined by WB against Bax and Bcl-2, while EC proliferation was assessed by BrdU-incorporation and fibrin gel angiogenic assays. Results Hyperglycemia increases the levels of MGO in retinas and RPE cells. MGO increases the levels of Ang-2 and strongly decreases the levels of VEGF in response to hypoxia. VEGF downregulation appears to result both from increased HIF-1, degradation and low HIF-1 transcriptional activity. The MGO-induced imbalance in the VEGF/Ang-2 significantly increases the expression of Bax and decreases the levels of Bcl-2. Consistently, this imbalance leads to decreased proliferation of the EC. Conclusion In diabetic retinopathy, accumulation of MGO may play a role in VEGF/Ang-2 imbalance, triggering the activation of the apoptotic cascade which induces decreased proliferation of retinal endothelial cells and as a consequence vessels regression [source] Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Katsumi Tsuchiya Abstract Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as a classical glycolytic protein; however, previous studies by our group and others have demonstrated that GAPDH is a general mediator initiating one or more apoptotic cascades. Our most recent findings have elucidated that an expression of a pro-apoptotic protein GAPDH is critically regulated at the promoter region of the gene. Apoptotic signals for its subsequent aggregate formation and nuclear translocation are controlled by the respective functional domains harboured within its cDNA component. In this study, coexpression of GAPDH with either wild-type or mutant (A53T) ,-synuclein and less likely with ,-synuclein in transfected COS-7 cells was found to induce Lewy body-like cytoplasmic inclusions. Unlike its full-length construct, the deleted mutant GAPDH construct (C66) abolished these apoptotic signals, disfavouring the formation of inclusions. The generated inclusions were ubiquitin- and thioflavin S-positive appearing fibrils. Furthermore, GAPDH coimmunoprecipitated with wild-type ,-synuclein in this paradigm. Importantly, immunohistochemical examinations of post mortem materials from patients with sporadic Parkinson's disease revealed the colocalized profiles immunoreactive against these two proteins in the peripheral zone of Lewy bodies from the affected brain regions (i.e. locus coeruleus). Moreover, a quantitative assessment showed that about 20% of Lewy bodies displayed both antigenicities. These results suggest that pro-apoptotic protein GAPDH may be involved in the Lewy body formation in vivo, probably associated with the apoptotic death pathway. [source] Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductaseJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5 2010S. Kato Abstract Recent reports have suggested that statins induce cell death in certain epithelial cancers and that patients taking statins to reduce cholesterol levels possess lower cancer incidence. However, little is known about the mechanisms of action of different statins or the effects of these statins in gynaecological malignancies. The apoptotic potential of two lipophilic statins (lovastatin and simvastatin) and one hydrophilic statin (pravastatin) was assessed in cancer cell lines (ovarian, endometrial and cervical) and primary cultured cancerous and normal tissues. Cell viability was studied by MTS assays and apoptosis was confirmed by Western blotting of PARP and flow cytometry. The expressions of key apoptotic cascade proteins were analysed. Our results demonstrate that both lovastatin and simvastatin, but not pravastatin, selectively induced cell death in dose- and time-dependent manner in ovarian, endometrial and cervical cancers. Little or no toxicity was observed with any statin on normal cells. Lipophilic statins induced activation of caspase-8 and -9; BID cleavage, cytochrome C release and PARP cleavage. Statin-sensitive cancers expressed high levels of HMG-CoA reductase compared with resistant cultures. The effect of lipophilic statins was dependent on inhibition of enzymatic activity of HMG-CoA reductase since mevalonate pre-incubation almost completely abrogated the apoptotic effect. Moreover, the apoptotic effect involved the inhibition of synthesis of geranylgeranyl pyrophosphate rather than farnesyl pyrophosphate. In conclusion, lipophilic but not hydrophilic statins induce cell death through activation of extrinsic and intrinsic apoptotic cascades in cancerous cells from the human female genital tract, which express high levels of HMG-CoA reductase. These results promote further investigation in the use of lipophilic statins as anticancer agents in gynaecological malignancies. [source] |