Home About us Contact | |||
Apicomplexan Parasites (apicomplexan + parasite)
Selected AbstractsActin-like protein 1 (ALP1) is a component of dynamic, high molecular weight complexes in Toxoplasma gondii,CYTOSKELETON, Issue 1 2010Jennifer L. Gordon Abstract Apicomplexan parasites, such as Toxoplasma gondii, rely on actin-based motility for cell invasion, yet conventional actin does not appear to be required for cell division in these parasites. Apicomplexans also contain a variety of actin-related proteins (Arps); however, most of these not directly orthologous to Arps in well-studied systems. We recently identified an apicomplexan-specific member of this family called Actin-Like Protein 1, (ALP1), which plays a role in the assembly of vesicular components recruited to the inner membrane complex (IMC) of daughter cells during cell division. In addition to its enrichment at daughter cell membranes, ALP1 is localized throughout the cytoplasm both diffusely distributed and concentrated in clusters that are detected by fluorescence microscopy, suggesting it forms complexes. Using quantitative optical imaging methods, including fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), we demonstrated that ALP1 is a component of a large complex, and that it readily exchanges between diffusible and complex-bound forms. Sedimentation and density gradient analyses revealed that ALP1 is found in a freely soluble state as well as high molecular weight complexes. During cell division, ALP1 was dynamically associated with the IMC, suggesting it rapidly cycles between freely diffusible and complex forms during daughter cell assembly. © 2009 Wiley-Liss, Inc. [source] Differential expression of the two distinct replication protein A subunits from Cryptosporidium parvumJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008Stanley Dean Rider Jr. Abstract Apicomplexan parasites differ from their host by possessing at least two distinct types (long and short) of replication protein A large subunits (RPA1). Different roles for the long and short types of RPA1 proteins have been implied in early biochemical studies, but certain details remained to be elucidated. In the present study, we have found that the Cryptosporidium parvum short-type RPA1 (CpRPA1A) was highly expressed at S-phase in parasites during the early stage of merogony (a cell multiplication process unique to this group of parasites), but otherwise present in the cytosol at a much lower level in other cell-cycle stages. This observation indicates that CpRPA1A is probably responsible for the general DNA replication of the parasite. On the other hand, the long-type CpRPA1B protein was present in a much lower level in the early life cycle stages, but elevated at later stages involved in sexual development, indicating that CpRPA1B may play a role in DNA recombination. Additionally, CpRPA1B could be up-regulated by UV exposure, indicating that this long-type RPA1 is probably involved in DNA repair. Collectively, our data implies that the two RPA1 proteins in C. parvum are performing different roles during DNA replication, repair and recombination in this parasite. J. Cell. Biochem. 104: 2207,2216, 2008. © 2008 Wiley-Liss, Inc. [source] Myosins of Babesia bovis: Molecular characterisation, erythrocyte invasion, and phylogenyCYTOSKELETON, Issue 4 2002A.E. Lew Abstract Using degenerate primers, three putative myosin sequences were amplified from Australian isolates of Babesa bovis and confirmed as myosins (termed Bbmyo-A, Bbmyo-B, and Bbmyo-C) from in vitro cultures of the W strain of B. bovis. Comprehensive analysis of 15 apicomplexan myosins suggests that members of Class XIV be defined as those with greater than 35% myosin head sequence identity and that these be further subclassed into groups bearing above 50,60% identity. Bbmyo-A protein bears a strong similarity with other apicomplexan myosin-A type proteins (subclass XIVa), the Bbmyo-B myosin head protein sequence exhibits low identity (35,39%) with all members of Class XIV, and 5,-sequence of Bbmyo-C shows strong identity (60%) with P. falciparum myosin-C protein. Domain analysis revealed five divergent IQ domains within the neck of Pfmyo-C, and a myosin-N terminal domain as well as a classical IQ sequence unusually located within the head converter domain of Bbmyo-B. A cross-reacting antibody directed against P. falciparum myosin-A (Pfmyo-A) revealed a zone of approximately 85 kDa in immunoblots prepared with B. bovis total protein, and immunofluorescence inferred stage-specific myosin-A expression since only 25% of infected erythrocytes with mostly paired B. bovis were immuno-positive. Multiplication of B. bovis in in vitro culture was inhibited by myosin- and actin-binding drugs at concentrations lower than those that inhibit P. falciparum. This study identifies and classifies three myosin genes and an actin gene in B. bovis, and provides the first evidence for the participation of an actomyosin-based motor in erythrocyte invasion in this species of apicomplexan parasite. Cell Motil. Cytoskeleton 52:202,220, 2002. © 2002 Wiley-Liss, Inc. [source] Vaccination with ,-Irradiated Neospora caninum Tachyzoites Protects Mice Against Acute Challenge with N. caninumTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2006S. RAMAMOORTHY ABSTRACT. Neospora caninum, an apicomplexan parasite, is a leading cause of bovine abortions worldwide. The efficacy of ,-irradiated N. caninum strain NC-1 tachyzoites as a vaccine for neosporosis was assessed in C57BL6 mice. A dose of 528 Gy of , irradiation was sufficient to arrest replication but not host cell penetration by tachyzoites. Female C57BL6 mice were vaccinated with two intraperitoneal inoculations of 1 × 106 irradiated tachyzoites at 4-wk intervals. When stimulated with N. caninum tachyzoite lysates, splenocytes of vaccinated mice, cultured 5 and 10 wk after vaccination, secreted significant (P<0.05) levels of interferon ,, interleukin (IL)-10, and small amounts of IL-4. Antibody isotype-specific ELISA of sera from vaccinated mice exhibited both IgG1 and IgG2a isotypes of antibodies. Vaccinated mice were challenged intraperitoneally with 2 × 107N. caninum tachyzoites. All vaccinated mice remained healthy and showed no obvious signs of neosporosis up to the 25th day post-challenge when the study was terminated. All unvaccinated control mice died within 1 wk of infection. Gamma-irradiated N. caninum tachyzoites can serve as an effective, attenuated vaccine for N. caninum. [source] How Epigenomics Contributes to the Understanding of Gene Regulation in Toxoplasma gondii,THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2008MATHIEU GISSOT ABSTRACT. How apicomplexan parasites regulate their gene expression is poorly understood. The complex life cycle of these parasites implies tight control of gene expression to orchestrate the appropriate expression pattern at the right moment. Recently, several studies have demonstrated the role of epigenetic mechanisms for control of coordinated expression of genes. In this review, we discuss the contribution of epigenomics to the understanding of gene regulation in Toxoplasma gondii. Studying the distribution of modified histones on the genome links chromatin modifications to gene expression or gene repression. In particular, coincident trimethylated lysine 4 on histone H3 (H3K4me3), acetylated lysine 9 on histone H3 (H3K9ac), and acetylated histone H4 (H4ac) mark promoters of actively transcribed genes. However, the presence of these modified histones at some non-expressed genes and other histone modifications at only a subset of active promoters implies the presence of other layers of regulation of chromatin structure in T. gondii. Epigenomics analysis provides a powerful tool to characterize the activation state of genomic loci of T. gondii and possibly of other Apicomplexa including Plasmodium or Cryptosporidium. Further, integration of epigenetic data with expression data and other genome-wide datasets facilitates refinement of genome annotation based upon experimental data. [source] Automated classification of Plasmodium sporozoite movement patterns reveals a shift towards productive motility during salivary gland infectionBIOTECHNOLOGY JOURNAL, Issue 6 2009Stephan Hegge Abstract The invasive stages of malaria and other apicomplexan parasites use a unique motility machinery based on actin, myosin and a number of parasite-specific proteins to invade host cells and tissues. The crucial importance of this motility machinery at several stages of the life cycle of these parasites makes the individual components potential drug targets. The different stages of the malaria parasite exhibit strikingly diverse movement patterns, likely reflecting the varied needs to achieve successful invasion. Here, we describe a Tool for Automated Sporozoite Tracking (ToAST) that allows the rapid simultaneous analysis of several hundred motile Plasmodium sporozoites, the stage of the malaria parasite transmitted by the mosquito. ToAST reliably categorizes different modes of sporozoite movement and can be used for both tracking changes in movement patterns and comparing overall movement parameters, such as average speed or the persistence of sporozoites undergoing a certain type of movement. This allows the comparison of potentially small differences between distinct parasite populations and will enable screening of drug libraries to find inhibitors of sporozoite motility. Using ToAST, we find that isolated sporozoites change their movement patterns towards productive motility during the first week after infection of mosquito salivary glands. [source] A double mutation of Escherichia coli 2C -methyl- d -erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphateACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2005Tanja Sgraja The essential enzyme 2C -methyl- d -erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually binds diphosphate-containing isoprenoids at the interface formed by the three subunits that constitute the active protein suggests the possibility of feedback regulation of MECP synthase. To investigate such a possibility, a form of the enzyme was sought that did not bind these ligands but which would retain the quaternary structure necessary to create the active site. Two amino acids, Arg142 and Glu144, in Escherichia coli MECP synthase were identified as contributing to ligand binding. Glu144 interacts directly with Arg142 and positions the basic residue to form two hydrogen bonds with the terminal phosphate group of the isoprenoid diphosphate ligand. This association occurs at the trimer interface and three of these arginines interact with the ligand phosphate group. A dual mutation was designed (Arg142 to methionine and Glu144 to leucine) to disrupt the electrostatic attractions between the enzyme and the phosphate group to investigate whether an enzyme without isoprenoid diphosphate could be obtained. A low-resolution crystal structure of the mutated MECP synthase Met142/Leu144 revealed that geranyl diphosphate was retained despite the removal of six hydrogen bonds normally formed with the enzyme. This indicates that these two hydrophilic residues on the surface of the enzyme are not major determinants of isoprenoid binding at the trimer interface but rather that hydrophobic interactions between the hydrocarbon tail and the core of the enzyme trimer dominate ligand binding. [source] RNA interference in protozoan parasitesCELLULAR MICROBIOLOGY, Issue 6 2004Elisabetta Ullu Summary RNA interference or RNAi is defined as the mechanism through which gene-specific, double-stranded RNA (dsRNA) triggers degradation of homologous transcripts. Besides providing an invaluable tool to downregulate gene expression in a variety of organisms, it is now evident that RNAi extends its tentacles into both the nucleus and the cytoplasm and is involved in a variety of gene silencing phenomena. Here we review the current status of RNAi in protozoan parasites that cause diseases of considerable medical and veterinary importance throughout Africa, Asia and the Americas. RNAi was first discovered in Trypanosoma brucei, a species of the family Trypanosomatidae, and it rapidly became the method of choice to downregulate gene expression in these organisms. At the same time, mechanistic studies exposed a role for RNAi in the control of retroposon transcript abundance. Whereas RNAi is also present in T. congolense, other members of the same family of organisms, namely T. cruzi and Leishmania major, are RNAi-negative. In apicomplexan parasites, there is experimental evidence for RNAi in Plasmodium, but this is not supported by their genetic make up. In contrast, the genome of Toxoplasma gondii harbours gene candidates with convincing similarity to ,classical' RNAi genes. Thus, as previously shown in fungi, protozoan parasites are genetically heterogeneous as far as the RNAi pathway is concerned. Finally, database mining predicts that Entamoeba histolytica and Giardia intestinalis have an RNAi pathway and the presence of RNAi genes in Giardia supports the view that gene silencing by dsRNA appeared very early during evolution of the eukaryotic lineage. [source] |