APC Mutations (apc + mutation)

Distribution by Scientific Domains


Selected Abstracts


Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors

GENES, CHROMOSOMES AND CANCER, Issue 1 2009
Carol Sweeney
Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis. © 2008 Wiley-Liss, Inc. [source]


Somatic APC mosaicism: a frequent cause of familial adenomatous polyposis (FAP),

HUMAN MUTATION, Issue 10 2007
Stefan Aretz
Abstract Somatic mutational mosaicism presents a challenge for both molecular and clinical diagnostics and may contribute to deviations from predicted genotype,phenotype correlations. During APC mutation screening in 1,248 unrelated patients with familial adenomatous polyposis (FAP), we identified 75 cases with an assumed or confirmed de novo mutation. Prescreening methods (protein truncation test [PTT], DHPLC) indicated the presence of somatic mosaicism in eight cases (11%). Sequencing of the corresponding fragments revealed very weak mutation signals, pointing to the presence of either nonsense or frameshift mutations at low level. All mutations were confirmed and quantified by SNaPshot analysis: in leukocyte DNA from the eight patients, the percentage of mosaicism varied between 5.5% and 77%, while the proportion of the mutation in DNA extracted from adenomas of the respective patient was consistently higher. The eight mutations identified as mosaic are localized within codons 216,1464 of the APC gene. According to the known genotype,phenotype correlation, patients with mutations in this region exhibit typical or severe FAP. However, six of the eight patients presented with an attenuated or atypical polyposis phenotype. Our data demonstrate that in a fraction of FAP patients the causative APC mutation may not be detected due to weak signals or somatic mosaicism that is restricted to tissues other than blood. SNaPshot analysis was proven to be an easy, rapid, and reliable method of confirming low-level mutations and evaluating the degree of mosaicism. Some of the deviations from the expected phenotype in FAP can be explained by the presence of somatic mosaicism. Hum Mutat 28(10), 985,992, 2007. © 2007 Wiley-Liss, Inc. [source]


Low frequency of AXIN2 mutations and high frequency of MUTYH mutations in patients with multiple polyposis,,

HUMAN MUTATION, Issue 10 2006
Sophie Lejeune
Abstract Familial adenomatous polyposis has been linked to germline mutations in the APC tumor suppressor gene. However, a number of patients with familial adenomatous polyposis (with either classical or attenuated phenotype) have no APC mutation. Recently, germline mutations in the Wnt pathway component gene AXIN2 have been associated with tooth agenesis-colorectal cancer syndrome. Moreover, biallelic mutations in the base excision repair gene MUTYH have been associated with polyposis and early-onset colorectal cancer. The aim of this study was to further assess the contribution of AXIN2 and MUTYH to hereditary colorectal cancer susceptibility. AXIN2 and MUTYH genes were screened for germline mutations by PCR and direct sequencing in 39 unrelated patients with multiple adenomas or colorectal cancer without evidence of APC mutation nor mismatch repair defect. Two novel AXIN2 variants were detected in one patient with multiple adenomas, but no clearly pathogenic mutation. In contrast, nine different MUTYH mutations were detected in eight patients, including four novel mutations. Biallelic MUTYH mutations were only found in patients with multiple adenomatous polyposis (7 out of 22 (32%)). Interestingly, five MUTYH mutation carriers had a family history consistent with dominant inheritance. Moreover, one patient with biallelic MUTYH mutations presented with multiple adenomas and severe tooth agenesis. Therefore, germline mutations are rare in AXIN2 but frequent in MUTYH in patients with multiple adenomas. Our data suggest that genetic testing of MUTYH may be of interest in patients with pedigrees apparently compatible with autosomal recessive as well as dominant inheritance. © 2006 Wiley-Liss, Inc. [source]


DNA methylation patterns in adenomas from FAP, multiple adenoma and sporadic colorectal carcinoma patients

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2006
Coral V.A. Wynter
Abstract Colorectal adenomas have traditionally been regarded as homogeneous. The aim of our study was to identify molecular features that may differentiate sporadic adenomas from familial adenomas such as Familial Adenomatous Polyposis (FAP) and Multiple Adenoma patients. DNA methylation was tested at Methylated IN Tumor (MINT) loci (1,2,12,31) and the CpG promoter region of genes MLH1, HPP1, MGMT, p14ARF and p16INK4a in FAP-associated adenomas (33) from 5 patients with a known APC mutation (Group 1, FAP), adenomas (29) from 4 Multiple Adenoma patients (Group 2 Multiple), adenomas (14) from 3 patients with sporadic colorectal cancers showing high microsatellite instability (Group 3, MSI-H) and adenomas (16) from 7 patients, with sporadic colorectal cancers showing microsatellite stable or low level instability (Group 4, MSS/MSI-L). Aberrant Crypt Foci (ACFs), Hyperplastic Polyps (HPs) and cancers were also examined for methylation status as well as K- ras mutation. Multiple Adenoma patients were examined for germline polymorphisms in the base excision repair gene, MYH. The familial syndrome, FAP -associated adenomas showed a significantly low frequency of MINT methylation (15.5%,) compared to sporadic MSS/MSI-L-associated adenomas (35.5%). Group 3 (MSI-H) adenomas were different in that many showed serration and a high level of methylation (57.1%). Group 2, Multiple Adenoma cases, resembled sporadic MSS/MSI-L-associated adenomas. However the promoter regions of key genes, MGMT, p14ARF and p16INK4a were methylated to a greater extent than MINTs in both sporadic and familial adenomas. Genetic profiling of adenomas supports the concept that adenomas belonging to familial syndromes pursue a different pathway to tumorigenesis than their sporadic counterpar/ts from their earliest formation. © 2005 Wiley-Liss, Inc. [source]


The APC/,-catenin pathway in ulcerative colitis,related colorectal carcinomas

CANCER, Issue 5 2002
A mutational analysis
Abstract BACKGROUND Although the APC/,-catenin pathway is known to play a crucial role in sporadic colorectal carcinogenesis, its influence on ulcerative colitis (UC),related neoplastic progression is unknown. To elucidate the role of the APC-/,-catenin pathway in UC-related carcinogenesis, the authors identified APC and ,-catenin mutations in a set of UC-related and sporadic colorectal carcinomas. METHODS The mutational cluster region of APC (codon 1267 to 1529) and exon 3 of the ,-catenin were directly sequenced. RESULTS Only 1 of 30 UC-related tumors (3%) showed an APC mutation whereas 11 of the 42 sporadic carcinomas (26%) had mutations within the mutational cluster region. Within the sporadic carcinoma group, only 8% of the right-sided carcinomas showed APC mutations whereas 50% of the left-sided carcinomas had mutations within the mutational cluster region. None of the tumors in either group showed a ,-catenin mutation. CONCLUSIONS Mutations of the APC and ,-catenin are rare in UC-related tumors. These genes may be altered because of mutations outside the regions studied, or by epigenetic silencing. Alternatively, other proteins involved in the APC/,-catenin signaling cascade may be altered, or this pathway may be involved infrequently in UC-related carcinogenesis. The significant difference in frequency of APC mutations between right- and left-sided sporadic tumors suggests different molecular pathways in these two tumor sites. Cancer 2002;94:1421,7. © 2002 American Cancer Society. DOI 10.1002/cncr.10334 [source]


Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients

GENES, CHROMOSOMES AND CANCER, Issue 2 2010
L. F. Thean
Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. However, APC mutations are not detected in 10,50% of FAP patients. We searched for a new cancer gene by performing genome-wide genotyping on members of an APC mutation-negative FAP variant family and ethnicity-matched healthy controls. No common copy number change was found in all affected members using the unaffected members and healthy controls as baseline. A 111 kb copy number variable (CNV) region at 3q26.1 was shown to have copy number loss in all eight polyps compared to matched lymphocytes of two affected members. A common region of loss in all polyps, which are precursors to CRC, is likely to harbor disease-causing gene in accordance to Knudsen's "two-hit" hypothesis. There is, however, no gene within the deleted region. A 2-Mb scan of the genomic region encompassing the deleted region identified PPM1L, coding for a novel serine-threonine phosphatase in the TGF-, and BMP signaling pathways. Real-time PCR analyses indicate that the 3,UTR of PPM1L transcript was down-regulated more than two-folds in all six polyps and tumors compared to matched mucosa of the affected member. This down-regulation was not observed in APC mutation-positive FAP patients. Our results suggest that the CNV region at 3q26 harbors an element that regulates the expression of an upstream candidate tumor suppressor, PPM1L, thus providing a novel mechanism for colorectal tumorigenesis in APC mutation-negative familial CRC patients. © 2009 Wiley-Liss, Inc. [source]


Analysis of somatic APC mutations in rare extracolonic tumors of patients with familial adenomatous polyposis coli

GENES, CHROMOSOMES AND CANCER, Issue 2 2004
Hendrik Bläker
Patients with familial adenomatous polyposis coli (FAP) carry heterozygous mutations of the APC gene. At a young age, these patients develop multiple colorectal adenomas that consistently display a second somatic mutation in the remaining APC wild-type allele. Inactivation of APC leads to impaired degradation of ,-catenin, thereby promoting continuous cell-cycle progression. The role of APC inactivation in rare extracolonic tumors of FAP patients has not been characterized sufficiently. Among tissue specimen from 174 patients with known APC germ-line mutations, we identified 8 tumors infrequently seen in FAP. To investigate the pathogenic role of APC pathway deregulation in these lesions, they were analyzed for second-hit somatic mutations in the mutational cluster region of the APC gene. Immunohistochemistry was performed to compare the expression pattern of ,-catenin to the mutational status of the APC gene. Exon 3 of the ,-catenin gene (CTNNB1) was analyzed for activating mutations to investigate alternative mechanisms of elevated ,-catenin concentration. Although CTNNB1 mutations were not observed, second somatic APC mutations were found in 4 of the 8 tumors: a uterine adenocarcinoma, a hepatocellular adenoma, an adrenocortical adenoma, and an epidermal cyst. These tumors showed an elevated concentration of ,-catenin. No APC mutations were seen in focal nodular hyperplasia of the liver, angiofibrolipoma, and seborrheic wart. This is the first study reporting second somatic APC mutations in FAP-associated uterine adenocarcinoma and epidermal cysts. Furthermore, our data strengthen a role for impaired APC function in the pathogenesis of adrenal and hepatic neoplasms in FAP patients. © 2004 Wiley-Liss, Inc. [source]


Mutations of APC and MYH in unrelated Italian patients with adenomatous polyposis coli,,

HUMAN MUTATION, Issue 4 2005
Gitana Aceto
Abstract The analysis of APC and MYH mutations in adenomatous polyposis coli patients should provide clues about the genetic heterogeneity of the syndrome in human populations. The entire coding region and intron-exon borders of the APC and MYH genes were analyzed in 60 unrelated Italian adenomatous polyposis coli patients. APC analysis revealed 26 point mutations leading to premature termination, one missense variant and one deletion spanning the entire coding region in 32 unrelated patients. Novel truncating point mutations included c.1176_1177insT (p.His393_PhefsX396), c.1354_1355del (p.Val452_SerfsX458), c.2684C>A (p.Ser895X), c.2711_2712del (p.Arg904_LysfsX910), c.2758_2759del (p.Asp920_CysfsX922), c.4192_4193del (p.Ser1398_SerfsX1407), c.4717G>T (p.Glu1573X) and a novel cryptic APC exon 6 splice site. MYH analysis revealed nine different germline variants in nine patients, of whom five were homozygotes or compound heterozygotes. The mutations included 4 novel MYH missense variants (c.692G>A, p.Arg231His; c.778C>T, p.Arg260Trp; c.1121T>C, p.Leu374Pro; and c.1234C>T, p.Arg412Cys) affecting conserved amino acid residues in the ENDO3c or NUDIX domains of the protein and one novel synonymous change (c.672C>T, p.Asn224Asn). Genotype-phenotype correlations were found in carriers of APC mutations but not in carriers of biallelic MYH mutations, except for a negative correlation with low number of polyps. A distinctive characteristic of patients negative for APC and MYH mutations was a significantly (p<0.0001) older age at diagnosis compared to patients with APC mutations. Moreover, the proportion of cases with an attenuated polyposis phenotype was higher (p = 0.0008) among patients negative for APC and MYH mutations than among carriers of APC or biallelic MYH mutations. © 2005 Wiley-Liss, Inc. [source]


Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: Evidence for Wnt pathway implication

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2009
Efstathios Kastritis
Abstract Wnt pathway signaling is crucial in many cancers and data indicate crosstalk with other key cancer pathways, however in urothelial carcinogenesis it has not been extensively studied. We searched for mutations in adenomatous polyposis coli (APC), a key regulator of the pathway, and studied b-catenin expression and interactions with the expression of other markers of apoptosis, angiogenesis, and proliferation in patients with invasive urothelial cancer. The mutation cluster region of APC was directly sequenced in 70 patients with muscle invasive disease who were treated with surgery and adjuvant chemotherapy. COX-2, p53, Ki67, and b-catenin were studied immunohistochemically and micro vessel density was quantified by CD105 expression. Single somatic amino-acid substitutions (missense) were found in 9 (13%) and frameshift deletions in 2 (3%) tumors, all located in regions adjacent to b-catenin binding sites. Patients having either APC missense mutations or b-catenin nuclear accumulation had less frequent COX-2 overexpression (24% vs. 76%, p = 0.043) and more frequent lymph node involvement (75% vs. 38%, p = 0.023). Patients with either APC mutations or b-catenin accumulation had shorter disease-free interval (13.4 vs. 28 months, p = 0.07), whereas in multivariate analysis they had shorter disease-specific survival (60.5 vs. 20.6 months, p = 0.048). Somatic APC missense mutations are not rare in advanced urothelial neoplasms. Either APC mutations and/or aberrant expression of b-catenin are associated with worse outcome. Further study of the role of the Wnt pathway, potential crosstalk with other pathways and potential candidate therapeutic targets in urothelial cancer is needed. © 2008 Wiley-Liss, Inc. [source]


Analysis of the human APC mutation spectrum in a saccharomyces cerevisiae strain with a mismatch repair defect

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2003
Kazunori Otsuka
Abstract Somatic APC mutations in colorectal tumors with an RER phenotype reflect excessive frameshift mutations, especially in simple repetition tracts within the coding sequence. Because this type of mutation is characteristic of cells with a deficient DNA MMR system, the APC mutation signature of RER tumors may be attributable to a defect in the MMR system. However, there is little experimental evidence to prove that the spectrum of mutations and the APC gene distribution are directly influenced by MMR system defects. We therefore examined the mutation spectrum of the MCR of the APC gene after transfection into both MMR-proficient and MMR-deficient yeast strains and compared it with a previously reported human APC mutation database. Small insertions or deletions in mono- or dinucleotide repeats were more common in the MMR-deficient than in the MMR-proficient strain (91.2% vs. 38.1%, Fisher's exact test p < 0.0001). Furthermore, the 2 mutation hot spots, 4385,4394(AG)5 and 4661,4666(A)6, found in the yeast system corresponded with those in human tumors. Combining our data with those from human tumors, there appears to be hypermutable mutations in specific simple repetitive sequences within the MCR, which are more prevalent in MMR-deficient cells and RER tumors than in MMR-proficient cells and non-RER tumors. We therefore consider that the differences in the spectra of RER and non-RER tumors are attributable at least in part to the MMR system of the host cells. © 2002 Wiley-Liss, Inc. [source]


The APC/,-catenin pathway in ulcerative colitis,related colorectal carcinomas

CANCER, Issue 5 2002
A mutational analysis
Abstract BACKGROUND Although the APC/,-catenin pathway is known to play a crucial role in sporadic colorectal carcinogenesis, its influence on ulcerative colitis (UC),related neoplastic progression is unknown. To elucidate the role of the APC-/,-catenin pathway in UC-related carcinogenesis, the authors identified APC and ,-catenin mutations in a set of UC-related and sporadic colorectal carcinomas. METHODS The mutational cluster region of APC (codon 1267 to 1529) and exon 3 of the ,-catenin were directly sequenced. RESULTS Only 1 of 30 UC-related tumors (3%) showed an APC mutation whereas 11 of the 42 sporadic carcinomas (26%) had mutations within the mutational cluster region. Within the sporadic carcinoma group, only 8% of the right-sided carcinomas showed APC mutations whereas 50% of the left-sided carcinomas had mutations within the mutational cluster region. None of the tumors in either group showed a ,-catenin mutation. CONCLUSIONS Mutations of the APC and ,-catenin are rare in UC-related tumors. These genes may be altered because of mutations outside the regions studied, or by epigenetic silencing. Alternatively, other proteins involved in the APC/,-catenin signaling cascade may be altered, or this pathway may be involved infrequently in UC-related carcinogenesis. The significant difference in frequency of APC mutations between right- and left-sided sporadic tumors suggests different molecular pathways in these two tumor sites. Cancer 2002;94:1421,7. © 2002 American Cancer Society. DOI 10.1002/cncr.10334 [source]


Control of ,-catenin/Tcf-directed transcription in medulloblastoma

ACTA PAEDIATRICA, Issue 2004
C Raffel
The ,-catenin, glycogen synthase kinase 3, (GSK-3,), and adenomatous polyposis coli (APC) gene products interact to form a network that influences the rate of cell proliferation. Medulloblastoma occurs as part of Turcot's syndrome and patients with Turcot's syndrome, who develop medulloblastomas, have been shown to harbor germline APC mutations. While APC mutations have been investigated and not identified in sporadic medulloblastomas, the status of the ,-catenin and GSK-3, genes has not been evaluated in this tumor. This study shows that 3 of 67 medulloblastomas harbor ,-catenin mutations, each of which converts a GSK-3, phosphorylation site from serine to cysteine. The ,-catenin mutation seen in the tumors was not present in matched constitutional DNA in the 2 cases where matched normal DNA was available. A loss of heterozygosity (LOH) analysis of 32 medulloblastomas with paired normal DNA samples was performed with 4 microsatellite markers flanking the GSK-3, locus; LOH with at least one marker was identified in 7 tumors. Sequencing of the remaining GSK-3, allele in these cases failed to identify any mutations. Taken together, these data suggest that activating mutations in the ,-catenin gene may be involved in the development of a subset of medulloblastomas. The GSK-3, gene does not appear to be a target for inactivation in this tumor. [source]


Microarray analysis reveals that leptin induces autocrine/paracrine cascades to promote survival and proliferation of colon epithelial cells in an Apc genotype-dependent fashion

MOLECULAR CARCINOGENESIS, Issue 1 2008
Jenifer I. Fenton
Abstract The imbalance in systemic mediators of inflammation, such as leptin, is thought to be involved in obesity-associated cancers. In addition, systemic endocrine signals can influence the local autocrine/paracrine factors produced within this microenvironment to influence epithelial cell fate. We previously demonstrated that leptin preferentially promotes the survival and proliferation of colon epithelial cells possessing an Apc mutation (IMCE) but not model normal cells (YAMC). Therefore, the purpose of this study was to identify leptin-induced functional gene family changes which characterize the response of colon epithelial cells possessing an Apc mutation but not normal cells. Consistent with our knowledge of colon carcinogenesis, genes regulating the Wnt/,-catenin-mediated pathway including Mdm2, Pik3r1, and Rb1 were upregulated by leptin. Importantly, leptin induced IGF-mediated pathway gene expression changes and their protein products in IMCE cells. In the IMCE cells IGFBP-6, IGF-1, and Crim1 expression was upregulated, while IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-5, and Nov expression was downregulated by leptin treatment. These data establish a biologically plausible mechanistic link between the elevated levels of growth factors and the increased risk of colon cancer associated with obesity. © 2007 Wiley-Liss, Inc. [source]