Home About us Contact | |||
AP-1 Activation (ap-1 + activation)
Selected AbstractsTLR7 and CD40 cooperate in IL-6 production via enhanced JNK and AP-1 activationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008Vanden Bush Abstract During vaccination or infection, adaptive and innate immune receptors of B cells are engaged by microbial antigens/ligands. A better understanding of how innate and adaptive signaling pathways interact could enlighten B lymphocyte biology as well as aid immunotherapy strategies and vaccine design. To address this goal, we examined the effects of TLR stimulation on BCR and CD40-induced B cell activation. Synergistic production of IL-6 was observed in both human and mouse primary B cells stimulated through B cell antigen receptors, CD40 and TLR7, and these two receptors also cooperated independently of BCR signals. The enhanced IL-6 production was dependent upon the activity of c-Jun kinase (JNK) and cFos. Dual stimulation through CD40 and TLR7 markedly enhanced JNK activity. The increased level of active JNK in dual-stimulated cells was accompanied by an increase in the level of active AP-1 monomers cJun and cFos. The stimulation of B cells through both CD40 and TLR7 therefore enhanced the production of cytokines through increased JNK signaling and AP-1 activity. In addition, the dual stimulation increased cFos/AP-1 species in stimulated cells, effectively expanding the repertoire of AP-1 dimers as compared to singly stimulated B cells. [source] Caspase-8- and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 productionFEBS JOURNAL, Issue 9 2007Norihiko Matsumoto Despite a dogma that apoptosis does not induce inflammation, Fas ligand (FasL), a well-known death factor, possesses pro-inflammatory activity. For example, FasL induces nuclear factor ,B (NF-,B) activity and interleukin 8 (IL-8) production by engagement of Fas in human cells. Here, we found that a dominant negative mutant of c-Jun, a component of the activator protein-1 (AP-1) transcription factor, inhibits FasL-induced AP-1 activity and IL-8 production in HEK293 cells. Selective inhibition of AP-1 did not affect NF-,B activation and vice versa, indicating that their activations were not sequential events. The FasL-induced AP-1 activation could be inhibited by deleting or introducing the lymphoproliferation (lpr) -type point mutation into the Fas death domain (DD), knocking down the Fas-associated DD protein (FADD), abrogating caspase-8 expression with small interfering RNAs, or using inhibitors for pan-caspase and caspase-8 but not caspase-1 or caspase-3. Furthermore, wildtype, but not a catalytically inactive mutant, of caspase-8 reconstituted the FasL-induced AP-1 activation in caspase-8-deficient cells. Fas ligand induced the phosphorylation of two of the three major mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but not p38 MAPK. Unexpectedly, an inhibitor for JNK but not for MAPK/ERK kinase inhibited the FasL-induced AP-1 activation and IL-8 production. These results demonstrate that FasL-induced AP-1 activation is required for optimal IL-8 production, and this process is mediated by FADD, caspase-8, and JNK. [source] Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytesGLIA, Issue 1 2009Hui-Hsin Wang Abstract Upregulation of matrix metalloproteinases (MMPs), especially MMP-9, by oxidized low-density lipoprotein (oxLDL) is implicated in many inflammatory diseases including brain injury. However, the signaling mechanisms underlying oxLDL-induced MMP-9 expression in astrocytes largely remain unknown. Here we report that oxLDL induces expression of proMMP-9 via a MAPK-dependent AP-1 activation in rat brain astrocyte (RBA)-1 cells. Results revealed by gelatin zymography, RT-PCR, and Western blotting analyses showed that oxLDL-induced proMMP-9 gene expression was mediated through Akt, JNK1/2, and p42/p44 MAPK phosphorylation in RBA-1 cells. These responses were attenuated by inhibitors of PI3K (LY294002), JNK (SP600125), and p42/p44 MAPK (PD98059), or transfection with dominant negative mutants and short hairpin RNA. Moreover, we demonstrated that AP-1 (i.e., c-Fos/c-Jun) is crucial for oxLDL-induced proMMP-9 expression which was attenuated by pretreatment with AP-1 inhibitor (curcumin). The regulation of MMP-9 gene transcription by AP-1 was confirmed by oxLDL-stimulated MMP-9 luciferase activity which was totally lost in cells transfected with the AP-1 binding site-mutated MMP-9 promoter construct (mt-AP1-MMP-9). These results suggested that oxLDL-induced proMMP-9 expression is mediated through PI3K/Akt, JNK1/2, and p42/p44 MAPK leading to AP-1 activation. Understanding the regulatory mechanisms underlying oxLDL-induced MMP-9 expression in astrocytes might provide a new therapeutic strategy of brain injuries and diseases. © 2008 Wiley-Liss, Inc. [source] Effect of mitogen-activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cellsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6 2007Raina Devi Ramnath Abstract Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NF,B-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-l, (MIP-l,) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NF,B and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NF,B and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NF,B and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NF,B and AP-1 signalling pathways in mouse pancreatic acini. [source] Age-related differences in MAP kinase activity in VSMC in response to glucose or TNF-,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2003Muyao Li Aortic vascular smooth muscle cells (VSMC) were used to study the effect of age on responses to high glucose concentrations or the cytokine, tumor necrosis factor-alpha (TNF-,). Activator protein-1 (AP-1) binding to DNA increased more in VSMC from old versus young rats (P,<,0.02) and was related to increased expression of its components, c-Fos, Fra-1, and JunD. The relationship to upstream signals, i.e., activities of mitogen-activated protein kinases (MAPK), was studied using antibodies to total and phosphorylated forms of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38. High glucose and TNF-, increased ERK phosphorylation more in old (P,<,0.05); whereas only TNF-, induced JNK activation in young (P,<,0.04). PD98059, a MEK inhibitor, attenuated AP-1 activation, lowered c-Fos and Fra-1 protein levels and reduced cell number and cells positive for proliferating cell nuclear antigen in old. We concluded that age differentially influenced activation of signaling pathways in VSMC exposed to high glucose or TNF-,. This may contribute to the increased risk for vascular disease associated with aging and diabetes mellitus (DM). J. Cell. Physiol. 197: 418,425, 2003© 2003 Wiley-Liss, Inc. [source] |