Linear Chromosome (linear + chromosome)

Distribution by Scientific Domains


Selected Abstracts


Split target specificity of ResT: a design for protein delivery, site selectivity and regulation of enzyme activity?

MOLECULAR MICROBIOLOGY, Issue 3 2007
Makkuni Jayaram
Summary The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity. [source]


The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome

MOLECULAR MICROBIOLOGY, Issue 5 2002
Dagmara Jakimowicz
Summary The mycelial prokaryote Streptomyces coelicolor A3(2) possesses a large linear chromosome (8.67 Mb) with a centrally located origin of replication (oriC). Recently, chromosome partitioning genes (parA and parB) and putative ParB binding sites (parS sequences) were identified in its genome. The S. coelicolor chromosome contains more parS sequ­ences than any other bacterial chromosome characterized so far. Twenty of the 24 parS sequences are densely packed within a relatively short distance (, 200 kb) around oriC. A series of in vitro and in vivo experiments showed that S. coelicolor ParB protein interacts specifically with the parS sequences, albeit with a rather low affinity. Our results suggested that the binding of ParB is not only determined by the parS sequence, but also by the location of target DNA close to oriC. The unusually high number and close proximity to each other of the parS sites, together with in vivo and in vitro evidence that multiple ParB molecules may assemble along the DNA from an initial ParB,parS complex, suggest that a large DNA segment around the replication origin may form a massive nucleoprotein complex as part of the replication-partitioning cycle. [source]


Structure of the single-stranded DNA-binding protein from Streptomyces coelicolor

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2009
Zoran, tefani
The crystal structure of the single-stranded DNA-binding protein (SSB) from Streptomyces coelicolor, a filamentous soil bacterium with a complex life cycle and a linear chromosome, has been solved and refined at 2.1,Ċ resolution. The three-dimensional structure shows a common conserved central OB-fold that is found in all structurally determined SSB proteins. However, it shows variations in quaternary structure that have previously only been found in mycobacterial SSBs. The strand involved in the clamp mechanism characteristic of this type of quaternary structure leads to higher stability of the homotetramer. To the best of our knowledge, this is the first X-ray structure of an SSB protein from a member of the genus Streptomyces and it was predicted to be the most stable of the structurally characterized bacterial or human mitochondrial SSBs. [source]


Telomere dynamics: the means to an end

CELL PROLIFERATION, Issue 4 2007
M. Matuli
Creating the physical ends of linear chromosomes, they play a crucial role in maintaining genome stability, control of cell division, cell growth and senescence. In vertebrates, telomeres consist of G-rich repetitive DNA sequences (TTAGGG)n and specific proteins, creating a specialized structure called the telosome that through mutual interactions with many other factors in the cell give rise to dynamic regulation of chromosome maintenance. In this review, we survey the structural and mechanistic aspects of telomere length regulation and how these processes lead to alterations in normal and immortal cell growth. [source]