Lineage Decision (lineage + decision)

Distribution by Scientific Domains


Selected Abstracts


Inhibition of Notch signaling biases rat thymocyte development towards the NK cell lineage

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2004
Jens van den Brandt
Abstract Notch receptors are involved in directing the choice between alternative cell fates in developmental scenarios such as thymopoiesis. By pharmacological interference in rat fetal thymus organ culture we show that inhibition of Notch signaling arrests T,cell development at an early double-negative stage and is accompanied by a dramatic increase in the number of NK cells. These cells show an activated phenotype, lack recombination of the TCR, gene locus and express perforin. Similarly, in thymic lobes reconstituted with fetal liver cells, progenitors predominantly develop into NK cells both after pharmacological interference of Notch and after treatment with a recombinant rat Notch1/Fc chimera. Collectively, this identifies the lineage decision of NK/T precursor cells as an important site of Notch action in rat thymocytes. [source]


Thymic development and repertoire selection: the rat perspective

IMMUNOLOGICAL REVIEWS, Issue 1 2001
Thomas Hünig
Summary: This review summarizes our current knowledge of T-cell maturation and repertoire selection in the rat thymus. Some unique features of early thymocyte development and of CD4/CD8 lineage decision are described. A detailed analysis of lineage progression through the CD4, CD8 "double positive" compartment and T-cell receptor-induced CD8 T-cell maturation in cell culture is provided. A second emphasis is placed on interactions between germline-encoded T-cell receptor elements with MHC molecules in thymic repertoire selection and alloreactivity [source]


Epigenetics and T helper 1 differentiation

IMMUNOLOGY, Issue 3 2009
Thomas M. Aune
Summary Naïve T helper cells differentiate into two subsets, T helper 1 and 2, which either transcribe the Ifng gene and silence the Il4 gene or transcribe the Il4 gene and silence the Ifng gene, respectively. This process is an essential feature of the adaptive immune response to a pathogen and the development of long-lasting immunity. The ,histone code' hypothesis proposes that formation of stable epigenetic histone marks at a gene locus that activate or repress transcription is essential for cell fate determinations, such as T helper 1/T helper 2 cell fate decisions. Activation and silencing of the Ifng gene are achieved through the creation of stable epigenetic histone marks spanning a region of genomic DNA over 20 times greater than the gene itself. Key transcription factors that drive the T helper 1 lineage decision, signal transducer and activator 4 (STAT4) and T-box expressed in T cells (T-bet), play direct roles in the formation of activating histone marks at the Ifng locus. Conversely, STAT6 and GATA binding protein 3, transcription factors essential for the T helper 2 cell lineage decision, establish repressive histone marks at the Ifng locus. Functional studies demonstrate that multiple genomic elements up to 50 kilobases from Ifng play critical roles in its proper transcriptional regulation. Studies of three-dimensional chromatin conformation indicate that these distal regulatory elements may loop towards Ifng to regulate its transcription. We speculate that these complex mechanisms have evolved to tightly control levels of interferon-, production, given that too little or too much production would be very deleterious to the host. [source]


Runx3 is involved in hair shape determination

DEVELOPMENTAL DYNAMICS, Issue 4 2005
Eli Raveh
Abstract Transcriptional regulators of the Runx family play critical roles in normal organ development and, when mutated, lead to genetic diseases and cancer. Runx3 functions during cell lineage decisions in thymopoiesis and neurogenesis and mediates transforming growth factor-, signaling in dendritic cells. Here, we study the function of Runx3 in the skin and its appendages, primarily the hair follicle, during mouse development. Runx3 is expressed predominantly in the dermal compartment of the hair follicles as they form and during the hair cycle, as well as in the nail and sweat gland skin appendages. Distinct expression is also detected periodically in isolated cells of the epidermis and in melanocytes, populating the hair bulb. Runx3 -deficient mice display a perturbation of the normal hair coat, which we show to be due to hair type and hair shape changes. Thus, one of the functions of Runx3 in skin may be to regulate the formation of the epithelial derived structural hair by affecting dermal to epidermal interactions. Developmental Dynamics 233:1478,1487, 2005. © 2005 Wiley-Liss, Inc. [source]


Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner ear

DEVELOPMENTAL DYNAMICS, Issue 4 2004
John A. Germiller
Abstract Inner ear sensory hair cells (HCs), supporting cells (SCs), and sensory neurons (SNs) are hypothesized to develop from common progenitors in the early embryonic otocyst. Because little is known about the molecular signals that control this lineage specification, we derived a model system of early otic development: conditionally immortalized otocyst (IMO) cell lines from the embryonic day 9.5 Immortomouse. This age is the earliest stage at which the otocyst can easily be separated from surrounding mesenchymal, nervous system, and epithelial cells. At 9.5 days post coitum, there are still pluripotent cells in the otocyst, allowing for the eventual identification of both SN and HC precursors,and possibly an elusive inner ear stem cell. Cell lines derived from primitive precursor cells can also be used as blank canvases for transfections of genes that can affect lineage decisions as the cells differentiate. It is important, therefore, to characterize the "baseline state" of these cell lines in as much detail as possible. We characterized seven representative "precursor-like" IMO cell populations and the uncloned IMO cells, before cell sorting, at the molecular level by polymerase chain reaction (PCR) and immunocytochemistry (IHC), and one line (IMO-2B1) in detail by real-time quantitative PCR and IHC. Many of the phenotypic markers characteristic of differentiated HCs or SCs were detected in IMO-2B1 proliferating cells, as well as during differentiation for up to 30 days in culture. These IMO cell lines represent a unique model system for studying early stages of inner ear development and determining the consequences of affecting key molecular events in their differentiation. Developmental Dynamics 231:815,827, 2004. © 2004 Wiley-Liss, Inc. [source]


Genetic regulation of stem cell origins in the mouse embryo

CLINICAL GENETICS, Issue 2 2005
A Ralston
,Stem cell' has practically become a household term, but what is a stem cell and where does it come from? Insight into these questions has come from the early mouse embryo, or blastocyst, from which three kinds of stem cells have been derived: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extraembryonic endoderm (XEN) cells. These stem cells appear to derive from three distinct tissue lineages within the blastocyst: the epiblast, the trophectoderm, and the extraembryonic endoderm. Understanding how these lineages arise during development will illuminate efforts to understand the establishment and maintenance of the stem cell state and the mechanisms that restrict stem cell potency. Genetic analysis has enabled the identification of several genes important for lineage decisions in the mouse blastocyst. Among these, Oct4, Nanog, Cdx2, and Gata6 encode transcription factors required for the three lineages of the blastocyst and for the maintenance their respective stem cell types. Interestingly, genetic manipulation of several of these factors can cause lineage switching among these stem cells, suggesting that knowledge of key lineage-determining genes could help control differentiation of stem cells more generally. Pluripotent stem cells have also been isolated from the human blastocyst, but the relationship between these cells and stem cells of the mouse blastocyst remains to be explored. This review describes the genetic regulation of lineage allocation during blastocyst formation and discusses similarities and differences between mouse and human ES cells. [source]