Line Spectra (line + spectrum)

Distribution by Scientific Domains


Selected Abstracts


Density Diagnostic Using Stark Broadening of He I Spectral Line Emission from Rydberg Levels

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 7-9 2006
M. Koubiti
Abstract Neutral helium line spectra of the diffuse series observed under recombining plasma conditions, are used for electron density diagnostics. The method is similar to that using high members of the Balmer series of hydrogen or its isotopes. It is based on the comparison of experimental line spectra to calculated Stark profiles obtained with the Stark line shape code PPP. Among the required atomic data, the dipole reduced matrix elements have been calculated using a hydrogenic approximation. A good agreement was found between the behaviors of the Einstein coefficients calculated using this approximation and the available corresponding values found in the literature. It is demonstrated here through its application to JET data that for relatively dense plasmas this method gives promising results which are consistent with other measurements. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Compton scattering of Fe K, lines in magnetic cataclysmic variables

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
A. L. McNamara
ABSTRACT Compton scattering of X-rays in the bulk flow of the accretion column in magnetic cataclysmic variables (mCVs) can significantly shift photon energies. We present Monte Carlo simulations based on a non-linear algorithm demonstrating the effects of Compton scattering on the H-, He-like and neutral Fe K, lines produced in the post-shock region of the accretion column. The peak line emissivities of the photons in the post-shock flow are taken into consideration and frequency shifts due to Doppler effects are also included. We find that line profiles are most distorted by Compton scattering effects in strongly magnetized mCVs with a low white dwarf mass and high mass accretion rate and which are viewed at an oblique angle with respect to the accretion column. The resulting line profiles are most sensitive to the inclination angle. We have also explored the effects of modifying the accretion column width and using a realistic emissivity profile. We find that these do not have a significant overall effect on the resulting line profiles. A comparison of our simulated line spectra with high-resolution Chandra/HETGS observations of the mCV GK Per indicates that a wing feature redward of the 6.4-keV line may result from Compton recoil near the base of the accretion column. [source]


Deep spectroscopy of the FUV,optical emission lines from a sample of radio galaxies at z, 2.5: metallicity and ionization,

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
A. Humphrey
ABSTRACT We present long-slit near-infrared (NIR) spectra, obtained using the Infrared Spectrometer And Array Camera (ISAAC) instrument at the Very Large Telescope, which sample the rest-frame optical emission lines from nine radio galaxies at z, 2.5. One-dimensional spectra have been extracted and, using broad-band photometry, have been cross-calibrated with spectra from the literature to produce line spectra spanning a rest wavelength of ,1200,7000 Å. The resulting line spectra have a spectral coverage that is unprecedented for radio galaxies at any redshift. We have also produced a composite of the rest-frame ultraviolet (UV),optical line fluxes of powerful, z, 2.5 radio galaxies. We have investigated the relative strengths of Ly,, H,, H,, He ii,1640 and He ii,4687, and we find that Av can vary significantly from object to object. In addition, we have identified new line ratios to calculate electron temperature: [Ne v],1575/[Ne v],3426, [Ne iv],1602/[Ne iv],2423, O iii],1663/[O iii],5008 and [O ii],2471/[O ii],3728. We calculate an average O iii temperature of 14100+1000,600 K. We have modelled the rich emission line spectra, and we conclude that they are best explained by active galactic nucleus (AGN) photoionization with the ionization parameter U varying between objects. For shock models (with or without the precursor) to provide a satisfactory explanation for the data, an additional source of ionizing photons is required , presumably the ionizing radiation field of the AGN. Single slab photoionization models are unable to reproduce the high- and the low-ionization lines simultaneously: the higher ionization lines imply higher U than do the lower ionization lines. This problem may be alleviated either by combining two or more single slab photoionization models with different U, or by using mixed-medium models such as those of Binette, Wilson & Storchi-Bergmann. In either case, U must vary from object to object. On the basis of N v/N iv] and N iv]/C iv we argue that, while photoionization is the dominant ionization mechanism in the extended emission line regions (EELR), shocks make a fractional contribution (,10 per cent) to its ionization. The N v/N iv] and N iv]/C iv ratios in the broad-line region (BLR) of some quasars suggest that shock ionization may be important in the BLR also. We find that in the EELR of z, 2 radio galaxies the N/H abundance ratio is close to its solar value. We conclude that N/H and metallicity do not vary by more than a factor of 2 in our sample. These results are consistent with the idea that the massive ellipticals which become the hosts to powerful AGN are assembled very early in the history of the universe, and then evolve relatively passively up to the present day. [source]


Recombination lines and free-free continua formed in asymptotic ionized winds: Analytic solution for the radiative transfer

ASTRONOMISCHE NACHRICHTEN, Issue 7 2009
R. Ignace
Abstract In dense hot star winds, the infrared and radio continua are dominated by free-free opacity and recombination emission line spectra. In the case of a spherically symmetric outflow that is isothermal and expanding at constant radial speed, the radiative transfer for the continuum emission from a dense wind is analytic. Even the emission profile shape for a recombination line can be derived. Key to these derivations is that the opacity scales with only the square of the density. These results are well-known. Here an extension of the derivation is developed that also allows for line blends and the inclusion of an additional power-law dependence beyond just the density dependence. The additional power-law is promoted as a representation of a radius dependent clumping factor. It is shown that differences in the line widths and equivalent widths of the emission lines depend on the steepness of the clumping power-law. Assuming relative level populations in LTE in the upper levels of He II, an illustrative application of the model to Spitzer/IRS spectral data of the carbon-rich star WR 90 is given (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Toward the Complete Prediction of the 1H and 13C NMR Spectra of Complex Organic Molecules by DFT Methods: Application to Natural Substances

CHEMISTRY - A EUROPEAN JOURNAL, Issue 21 2006
Alessandro Bagno Prof.
Abstract The NMR parameters (1H and 13C chemical shifts and coupling constants) for a series of naturally occurring molecules have been calculated mostly with DFT methods, and their spectra compared with available experimental ones. The comparison includes strychnine as a test case, as well as some examples of recently isolated natural products (corianlactone, daphnipaxinin, boletunone B) featuring unusual and/or crowded structures and, in the case of boletunone B, being the subject of a recent revision. Whenever experimental spectra were obtained in polar solvents, the calculation of NMR parameters was also carried out with the Integral Equation-Formalism Polarizable Continuum Model (IEF-PCM) continuum method. The computed results generally show a good agreement with experiment, as judged not only by statistical parameters but also by visual comparison of line spectra. The origin of the remaining discrepancies is attributed to the incomplete modeling of conformational and specific solvent effects. [source]