Home About us Contact | |||
Line Data (line + data)
Selected AbstractsModel-based reconstruction for cardiac cine MRI without ECG or breath holdingMAGNETIC RESONANCE IN MEDICINE, Issue 5 2010Freddy Odille Abstract This paper describes an acquisition and reconstruction strategy for cardiac cine MRI that does not require the use of electrocardiogram or breath holding. The method has similarities with self-gated techniques as information about cardiac and respiratory motion is derived from the imaging sequence itself; here, by acquiring the center k -space line at the beginning of each segment of a balanced steady-state free precession sequence. However, the reconstruction step is fundamentally different: a generalized reconstruction by inversion of coupled systems is used instead of conventional gating. By correcting for nonrigid cardiac and respiratory motion, generalized reconstruction by inversion of coupled systems (GRICS) uses all acquired data, whereas gating rejects data acquired in certain motion states. The method relies on the processing and analysis of the k -space central line data: local information from a 32-channel cardiac coil is used in order to automatically extract eigenmodes of both cardiac and respiratory motion. In the GRICS framework, these eigenmodes are used as driving signals of a motion model. The motion model is defined piecewise, so that each cardiac phase is reconstructed independently. Results from six healthy volunteers, with various slice orientations, show improved image quality compared to combined respiratory and cardiac gating. Magn Reson Med 63:1247,1257, 2010. © 2010 Wiley-Liss, Inc. [source] Reionization history from coupled cosmic microwave background/21-cm line dataMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005R. Salvaterra ABSTRACT We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash. The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for l, 4000 and reaches a maximum amplitude of l(l+ 1)Cl/2,, 1.6 × 10,13 on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities. [source] Recent observations of AB Dor and interpretationASTRONOMISCHE NACHRICHTEN, Issue 4 2009E. Budding Abstract We use minimal empirical modelling techniques to interpret recent (2006,2007) photometry and spectroscopy of AB Dor. We compare, in particular, broadband (B and V) maculation effects with emission features in high-resolution Ca II K-line spectroscopy. We also compare emission effects in the Ca II Kand H, lines observed at different rotational phases. We refer to a broader multiwavelength campaign, of which these optical data were a part, involving X-ray and microwave observations to be published later. The broadband light curves are characterized by one outstanding macula, whereas the emission lines suggest 4 possible main chromospheric activity sites (,faculae'). These appear at a similar latitude and with comparable size to the main umbra, but there are significant displacements in longitude. However, one strong facular concentration near phase zero may have a physical relationship to the main macula. The derived longitudes of these features would have been affected by differential rotation operating over the several months between the spectroscopic and photometric observations, but the difference of at least ,30° between facula and umbra appears too great to allow their coincidence. The possibility of a large bipolar surface structure is considered, keeping in mind the bipolar character of solar activity centres: the activity of rapidly rotating cool stars being generally compared with that of the Sun, scaled up by a few orders of magnitude. Observed microwave activity may link to this same main photospheric and chromospheric centre picked up by the optical analysis. Characterization of macular and facular contributions in stellar activity sites would be improved with a closer timing of observations and higher signal to noise ratios in emission line data (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Constitutively activated FLT3 phosphorylates BAD partially through Pim-1BRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2006Kyu-Tae Kim Summary Constitutively activating internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 (Fms-like tyrosine kinase 3) play an important role in leukaemogenesis and their presence is associated with a poor prognosis in acute myeloid leukaemia (AML). Examining the anti- and pro-apoptotic proteins in constitutively activated FLT3 signalling in BaF3/ITD and MV4-11 cells, we found that the level of Bcl-2 antagonist of cell death (BAD) phosphorylation was greatly decreased in response to FLT3 inhibition. Both Ser-112 and Ser-136 of BAD are rapidly dephosphorylated after treatment with the FLT3 inhibitor CEP-701 in BaF3/ITD and MV4-11 cells. In confirmation of the cell line data, BAD was highly phosphorylated in both constitutively activated wild-type and mutant FLT3 primary AML samples, and rapidly dephosphorylated after treatment of the primary samples with CEP-701. Upstream proteins known to phosphorylate BAD include Akt, extracellular signal-regulated kinase/mitogen-activated protein kinase (Erk/MAPK), Pim-1 and Pim-2. We and other groups have shown that constitutively activated FLT3 induces multiple signalling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt, Erk/MAPK and Janus kinase/signal transducers and activators of transcription (Jak/STAT). Thus, BAD may be a nexus point upon which these multiple signalling pathways converge in FLT3-mediated cell survival. In support of this, siRNA knockdown of BAD expression in MV4-11 cells conferred resistance to CEP-701-mediated apoptosis. Our data suggests that Pim-1 is one of the principal kinases mediating the anti-apoptotic function of FLT3/ITD signalling via the phosphorylation of BAD. [source] Liquid-liquid-solid Equilibrium for Two Quaternary Systems Potassium Chloride+Rubidium Chloride+1/2-Propanol+Water at 25 °CCHINESE JOURNAL OF CHEMISTRY, Issue 12 2008Hai-Yan GUO Abstract The phase equilibria of two quaternary systems K+, Rb+//Cl-1/2-C3H7OH, H2O have been investigated at 25 °C. The liquid-solid phase equilibrium of ternary system KCl+RbCl+H2O has been determined. The liquid-liq- uid-solid phase equilibrium of the five different KCl/RbCl mass factions (from 1/0, 0.75/0.25, 0.5/0.5, 0.25/0.75 to 0/1) in the mixed solvent of 1/2-C3H7OH-H2O was investigated. The integrated phase diagrams were drawn for two quaternary systems and the salting effects of the 1/2-C3H7OH were discussed. The results of the fitting for liquid- liquid data by a five-coefficient equation and the tie line data by the Eisen-Joffe equation are reasonable. [source] Defining hydrochemical evolution of streamflow through flowpath dynamics in Kawakami headwater catchment, Central JapanHYDROLOGICAL PROCESSES, Issue 10 2005Kasdi Subagyono Abstract The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21,22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first-order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end-member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd. [source] |