Home About us Contact | |||
Limiting Nutrient (limiting + nutrient)
Selected AbstractsEffects of supplemental L-methionine on E-64 [trans-epoxysuccinyl-1-leucyl-amido (4-guanido) butane]-induced dysmorphology in rat embryos cultured in vitroCONGENITAL ANOMALIES, Issue 4 2003Kouichi Yoshidome ABSTRACT E-64 [trans-epoxysuccinyl-1-leucylamido (4-guanido) butane] is teratogenic, inducing a spectrum of malformations in vivo and producing similar effects in vitro. Numerous studies support the concept that E-64-induced malformations result from embryonic nutritional deficiency, without affecting the maternal nutritional status. This has provided a useful model with which to investigate the nutritional requirements of the early embryo, as well as the role of various nutrients in the etiology of congenital defects. In the current investigation, we examined effects of L-methionine on E-64-induced embryotoxicity in vitro. For these experiments, we cultured rat embryos 9.5 days postconception (p.c.) for 48 hours with E-64 and/or L-methionine. We found that the addition of L-methionine to E-64-exposed cultures reduced optic abnormality and increased embryo protein. These results suggest that embryopathy largely results from a deficiency of L-methionine although E-64 limits the supply of all amino acids to the embryo. Furthermore, although endocytosis and degradation of proteins by the visceral yolk sac (VYS) supply most amino acids to the embryo, free amino acids may be compensatory when this source is reduced. These results support those of previous investigations that suggest L-methionine is a limiting nutrient for embryonic development. [source] Nutrient Uptake and Mineralization during Leaf Decay in Streams , a Model SimulationINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 4 2009J. R. Webster Abstract We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of decomposition, while mineralization may produce increases in concentrations during later stages of decomposition. The simulations also showed that initial nutrient content of the leaves can affect the stream nutrient concentration dynamics and determine whether nitrogen or phosphorus is the limiting nutrient. Finally, the simulations suggest a net retention (uptake > mineralization) of nutrients in headwater streams, which is balanced by export of particulate organic nutrients to downstream reaches. Published studies support the conclusion that uptake can substantially change stream nutrient concentrations. On the other hand, there is little published evidence that mineralization also affects nutrient concentrations. Also, there is little information on direct microbial utilization of nutrients contained in the decaying leaves themselves. Our results suggest several directions for research that will improve our understanding of the complex relationship between leaf decay and nutrient dynamics in streams. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] FLUORESCENCE-BASED MAXIMAL QUANTUM YIELD FOR PSII AS A DIAGNOSTIC OF NUTRIENT STRESSJOURNAL OF PHYCOLOGY, Issue 4 2001Jean-Paul Parkhill In biological oceanography, it has been widely accepted that the maximum quantum yield of photosynthesis is influenced by nutrient stress. A closely related parameter, the maximum quantum yield for stable charge separation of PSII, (,PSII)m, can be estimated by measuring the increase in fluorescence yield from dark-adapted minimal fluorescence (Fo) to maximal fluorescence (Fm) associated with the closing of photosynthetic reaction centers with saturating light or with a photosynthetic inhibitor such as 3,-(3,4-dichlorophenyl)-1,,1,-dimethyl urea (DCMU). The ratio Fv/Fm (= (Fm, Fo)/Fm) is thus used as a diagnostic of nutrient stress. Published results indicate that Fv/Fm is depressed for nutrient-stressed phytoplankton, both during nutrient starvation (unbalanced growth) and acclimated nutrient limitation (steady-state or balanced growth). In contrast to published results, fluorescence measurements from our laboratory indicate that Fv/Fm is high and insensitive to nutrient limitation for cultures in steady state under a wide range of relative growth rates and irradiance levels. This discrepancy between results could be attributed to differences in measurement systems or to differences in growth conditions. To resolve the uncertainty about Fv/Fm as a diagnostic of nutrient stress, we grew the neritic diatom Thalassiosira pseudonana (Hustedt) Hasle et Heimdal under nutrient-replete and nutrient-stressed conditions, using replicate semicontinuous, batch, and continuous cultures. Fv/Fm was determined using a conventional fluorometer and DCMU and with a pulse amplitude modulated (PAM) fluorometer. Reduction of excitation irradiance in the conventional fluorometer eliminated overestimation of Fo in the DCMU methodology for cultures grown at lower light levels, and for a large range of growth conditions there was a strong correlation between the measurements of Fv/Fm with DCMU and PAM (r2 = 0.77, n = 460). Consistent with the literature, nutrient-replete cultures showed consistently high Fv/Fm (,0.65), independent of growth irradiance. Under nutrient-starved (batch culture and perturbed steady state) conditions, Fv/Fm was significantly correlated to time without the limiting nutrient and to nutrient-limited growth rate before starvation. In contrast to published results, our continuous culture experiments showed that Fv/Fm was not a good measure of nutrient limitation under balanced growth conditions and remained constant (,0.65) and independent of nutrient-limited growth rate under different irradiance levels. Because variable fluorescence can only be used as a diagnostic for nutrient-starved unbalanced growth conditions, a robust measure of nutrient stressed oceanic waters is still required. [source] PRODUCTION AND RELEASE OF GEOSMIN BY THE CYANOBACTERIUM OSCILLATORIA SPLENDIDA ISOLATED FROM A PHOENIX WATER SOURCEJOURNAL OF PHYCOLOGY, Issue 2001Article first published online: 24 SEP 200 Hu, Q.1, Sommerfeld, M.1 Lowry, D.1, Dempster, T.1, Westerhoff, P.2, Baker, L.3, Bruce, D. & Nguyen, M. L.2 1Department of Plant Biology and 2Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona 85287; 3Baker Environmental Consulting, 8001 Greenwood Drive, Moundview, MN 55112 Geosmin is a common component of the off-flavors detected in the drinking water supply sources of metropolitan Phoenix (Arizona). A cyanobacterium, Oscillatoria splendida, was isolated from source water during incidents of elevated geosmin production and was implicated as a cause of earthy/musty off-flavors in the drinking water. Production of geosmin was found to be constitutive in O. splendida during all growth stages. Effects of environmental parameters on the growth characteristics, and on production and release of geosmin by O. splendida, was studied under laboratory conditions. The specific growth rate and cell-bound geosmin increased with increasing temperature from 12 to 26 °C, the range of water temperatures that occur in the drinking water supply. On a per-chlorophyll a basis, however, more geosmin was released from the cells at lower temperatures. An inverse relationship was evident between light intensity and O. splendida growth and the release of geosmin. Cell-bound geosmin, however, was higher at higher light intensities. Dark incubation initially stimulated the biosynthesis of geosmin, whereas a prolonged period of darkness (2-3 weeks) resulted in massive release of geosmin into the culture medium from lysis and cellular decomposition. Dissolved nitrogen appeared to be the limiting nutrient for O. splendida in the local water supply source. When nitrate was added to laboratory cultures, both growth and geosmin production increased. These results will be discussed in context with episodes of off-flavors in drinking waters in metropolitan Phoenix, Arizona. [source] NUTRIENT LOADING ASSESSMENT IN THE ILLINOIS RIVER USING A SYNTHETIC APPROACH,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2003Baxter E. Vieux ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border. [source] Staphylococcus aureus haem oxygenases are differentially regulated by iron and haemMOLECULAR MICROBIOLOGY, Issue 5 2008Michelle L. Reniere Summary Iron acquisition is a vital process for most pathogenic bacteria, as iron is a limiting nutrient during infection. Staphylococcus aureus, an increasingly important pathogen, acquires iron from host haem via elaboration of the iron-regulated surface determinant system (Isd). IsdG and IsdI are haem oxygenases that have been proposed to degrade exogenous haem in the bacterial cytoplasm as a mechanism to liberate free iron for use as a nutrient source. Herein, we report that IsdG and IsdI are both important for S. aureus growth on haemin as a sole iron source and are necessary for full S. aureus pathogenesis. Investigations into the regulation of these enzymes revealed that IsdG and IsdI are differentially regulated by iron and haem through both transcriptional and post-transcriptional mechanisms. Additionally, IsdI was found to be expressed in infected tissues at the sites of abscess formation, suggesting that abscesses are iron-starved microenvironments inside the host. These findings suggest that S. aureus differentially regulates IsdG and IsdI in response to alterations in iron and haem availability during infection. [source] Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rateNEW PHYTOLOGIST, Issue 3 2006Mikaela Kruskopf Summary ,,To consider the relationship between chlorophyll a (Chl a) content and phytoplankton growth and nutrient status, four phytoplankton species were grown in nitrogen (N)-limited [and, for one species, phosphorus (P)-limited] culture and measurements were made of CNP biomass, in vivo and in vitro Chl a content, the ratio of variable to maximum fluorescence (FV/FM) and the performance index for photosynthesis, PIABS (a derivative of the O-J-I-P analysis of photosystem II functionality). ,,Interspecies differences plus the development of intraspecies differences during nutrient stress produced c. 10-fold variations in Chl : C. Estimates of C from in vivo Chl content were better than those from extracted Chl content, as the decline in Chl : C during nutrient stress was offset in part by increased Chl fluorescence. ,,FV/FM was not a robust indicator of nutrient status or relative growth rate. Responses of FV/FM in cells re-fed the limiting nutrient showed no consistent pattern with which to gauge nutrient status. PIABS showed some promise as an indicator of nutrient status and relative growth rate. ,,Chl a content and fluorescence parameters do not deserve the unquestioned status they usually enjoy as indicators of biomass and physiological status. [source] Above and below ground impacts of terrestrial mammals and birds in a tropical forestOIKOS, Issue 4 2008Amy E. Dunham Understanding the impact of losing trophic diversity has global significance for managing ecosystems as well as important theoretical implications for community and ecosystem ecology. In several tropical forest ecosystems, habitat fragmentation has resulted in declines and local extinctions of mammalian and avian terrestrial insectivores. To assess the ability of a tropical rainforest community in Ivory Coast to resist perturbation from such loss of trophic diversity, I traced feedbacks in above and below ground communities and measured changes in nutrient levels and herbivory rates in response to an experimental exclosure of avian and mammalian terrestrial insectivores. I present evidence that loss of this functional group may result in increased tree seedling herbivory and altered nutrient regimes through changes in the abundance and guild structure of invertebrates. Exclusion of top predators of the forest floor resulted in increased seedling herbivory rates and macro-invertebrate (>5 mm) densities with strongest effects on herbivorous taxa, spiders and earthworms. Densities of microbivores including Collembola, Acarina and Sciaridae showed the opposite trend as did levels of inorganic phosphorus in the soil. Results were evaluated using path analysis which supported the presence of a top down trophic cascade in the detrital web which ultimately affected turnover of phosphorus, a limiting nutrient in tropical soils. Results illustrate the potential importance of vertebrate predators in both above and belowground food webs despite the biotic diversity and structural heterogeneity of the rainforest floor. [source] Restoration of a Mediterranean Postfire Shrubland: Plant Functional Responses to Organic Soil AmendmentRESTORATION ECOLOGY, Issue 5 2010Marie Larchevêque We investigated the potential of plant functional responses to speed up restoration in a postfire ecosystem. The patterns of change in plant nutrient uptake and water potential after compost amendment were monitored for 2 years in a 7-year-old postfire shrubland in southeastern France. We studied four different stress-tolerant species with contrasting life traits: three shrub species and a perennial herb. Three treatments were applied: control, 50 and 100 Mg/ha of fresh cocomposted sewage sludge and green waste. In both compost treatments, concentrations of all the macronutrients increased. The amendment improved N and cation nutrition, but the positive effect of compost on plant nutrient status was most apparent on leaf P concentrations, indicating that P was a limiting nutrient in this shrubland. Compost had no significant short-term effect on trace metal concentrations in plants. The plant nutrition response of different species to the compost varied; the nutritional status of Brachypodium retusum and Cistus albidus improved the most, whereas that of Quercus coccifera and Ulex parviflorus improved the least. Woody species exhibited no increase in N stocks. Phosphorus accumulation was also about three times higher in plots amended at 50 Mg/ha than in control plots for B. retusum and C. albidus. The severe summer drought of 2003 altered the compost effect. Contrary to our expectations, plants on amended plots did not exhibit a better water status in summer: the effect of the summer drought had a greater effect on water status than did the compost treatment. [source] Limnological changes in a sub-tropical shallow hypertrophic lake during its restoration: two years of a whole-lake experimentAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2001F. Scasso Abstract 1.,Lake Rodó is a turbid system, a condition attributed to algal biomass. The proximal source of the eutrophication was stormwater discharges from an ill-defined urban area. This paper describes an attempt to restore the water quality of Lake Rodó, the first time this has been done in Uruguay. In spring 1996 it was drained, sediments were removed and stream inputs were diverted. Groundwater was used to re-fill the lake. Due to its high nutrient concentration a re-circulation system was designed, pumping water from associated pools covered with free-floating plants. 2.,After the lake was refilled, the system was characterized by oxygen saturation or over-saturation, neutral to basic pH, and high phosphorus, nitrogen and silicate concentrations. Ratios of total nitrogen (TN):total phosphorus (TP) and chlorophyll a (Chl a):TP indicated that phosphorus was the primary limiting nutrient during the period of groundwater supply. Once groundwater pumping had ceased, there was a decrease in TN:TP and Chl a:TP ratios, suggesting N-limiting conditions prevailed in some periods. 3.,Before restoration, the phytoplankton community was dominated year-round by Planktothrix agardhii; since restoration the community has been more diverse. This change has favoured grazing by mesozooplankton, and the onset of clear-water phases in spring. 4.,Abundant populations of small omnivorous fish maintained a high predation pressure on zooplankton, restricting the abundance of large-bodied herbivores, which, in turn, allowed an increase in phytoplanton biomass and a decrease in water transparency. Based on this observation, together with the phosphorus concentration and the low abundance of filamentous cyanobacteria compared with previous studies, we suggest that top-down control has played a key role in increasing transparency in Lake Rodó. 5.,A nutrient reduction programme, by the mechanical harvest of floating plants, and a removal of small omnivorous fishes and stocking strictly with piscivores, could be key factors in the achievement of a stable clear-water phase. However, if blooms of Microcystis or other similar genera occur in summer, additional measures (e.g. reduction of the hydraulic residence time) will be needed to improve water transparency. Copyright © 2001 John Wiley & Sons, Ltd. [source] Complex responses to culture conditions in Pseudomonas syringae pv. tomato DC3000 continuous cultures: The role of iron in cell growth and virulence factor inductionBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2010Beum Jun Kim Abstract The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086,h,1 with an initial cell mass of less than 0.6,OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9,OD600 or higher, or at low dilution rates (<0.05,h,1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron-supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6,h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron-limited chemostat cultures was observed compared to iron-supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955,964. © 2009 Wiley Periodicals, Inc. [source] Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrientsFRESHWATER BIOLOGY, Issue 11 2002J. M. Medina-Sánchez SUMMARY 1. The response of bacterial production (measured as [3H]TdR incorporation rate) to spectral solar radiation was quantified experimentally in an oligotrophic high-mountain lake over 2 years. Bacterial responses were consistent: ultraviolet-B (UVB) was harmful, whereas ultraviolet-A (UVA) + photosynthetically active radiation (PAR) and PAR enhanced bacterial activity. Full sunlight exerted a net stimulatory effect on bacterial activity in mid-summer but a net inhibitory effect towards the end of the ice-free period. 2. Experiments were undertaken to examine whether the bacterial response pattern depended on the presence of algae and/or was modulated by the availability of a limiting inorganic nutrient (phosphorus, P). In the absence of algae, [3H]TdR incorporation rates were significantly lower than when algae were present under all light treatments, and the consistent bacterial response was lost. This suggests that the bacterial response to spectral solar radiation depends on fresh-C released from algae, which determines the net stimulatory outcome of damage and repair in mid-summer. 3. In the absence of algae, UVB radiation inhibited bacteria when they were strongly P-deficient (mean values of N : P ratio: 46.1), whereas it exerted no direct effect on bacterial activity when they were not P-limited. 4. P-enrichment of lake water markedly altered the response of bacteria to spectral solar radiation at the end of ice-free period, when bacteria were strongly P-deficient. Phosphorus enrichment suppressed the inhibitory effect of full sunlight that was observed in October, both in whole lake water (i.e. including algae) and in the absence of algae. This indicates that the bacterial P-deficiency, measured as the cellular N : P ratio, was partly responsible for the net inhibitory effect of full sunlight, implying a high bacterial vulnerability to UVB. [source] Nutrient constraints to tropical agroecosystem productivity in long-term degrading soilsGLOBAL CHANGE BIOLOGY, Issue 12 2008SOLOMON NGOZE Abstract Soil degradation is one of the most serious threats to sustainable crop production in many tropical agroecosystems where extensification rather than intensification of agriculture has occurred. In the highlands of western Kenya, we investigated soil nitrogen (N) and phosphorus (P) constraints to maize productivity across a cultivation chronosequence in which land-use history ranged from recent conversion from primary forest to 100 years in continuous cropping. Nutrient treatments included a range of N and P fertilizer rates applied separately and in combination. Maize productivity without fertilizer was used as a proxy measure for indigenous soil fertility (ISF). Soil pools of mineral nitrogen, strongly bound P and plant-available P decreased by 82%, 31% and 36%, and P adsorption capacity increased by 51% after 100 years of continuous cultivation. For the long rainy season (LR), grain yield without fertilizer declined rapidly as cultivation age increased from 0 to 25 years and then gradually declined to a yield of 1.6 Mg ha,1, which was maintained as time under cultivation increased from 60 to 100 years. LR grain yield in the old conversions was only 24% of the average young conversion grain yield (6.4 Mg ha,1). Application of either N or P alone significantly increased grain yield in both the LR and short rainy (SR) seasons, but only application of 120 kg N ha,1 on the old conversion increased yield by >1 Mg ha,1. In both SR and LR, there was a greater average yield increment response to N and P when applied together (ranging from 1 to 3.8 Mg ha,1 for the LR), with the greatest responses on the old conversions. The benefit,cost ratio (BCR) for applying 120 kg N ha,1 alone was <1 except on the old conversions, while BCRs were>1 for applying 25 kg P ha,1 alone at all levels of conversion for both seasons. Application of both N (120 kg N ha,1) and P (25 kg P ha,1) on the old conversions resulted in the greatest BCRs. This study clearly indicates that maize productivity responses to N and P fertilizer are significantly affected by the age of cultivation and its influence on ISF, but that loss of productivity can be restored rapidly when these limiting nutrients are applied. Management strategies should consider ISF and economic factors to determine optimal N and P input requirements for achieving and sustaining profitable crop production on degraded soils. [source] Nutrient Limitation and Stoichiometry of Carnivorous PlantsPLANT BIOLOGY, Issue 6 2006A. M. Ellison Abstract: The cost-benefit model for the evolution of carnivorous plants posits a trade-off between photosynthetic costs associated with carnivorous structures and photosynthetic benefits accrued through additional nutrient acquisition. The model predicts that carnivory is expected to evolve if its marginal benefits exceed its marginal costs. Further, the model predicts that when nutrients are scarce but neither light nor water is limiting, carnivorous plants should have an energetic advantage in competition with non-carnivorous plants. Since the publication of the cost-benefit model over 20 years ago, marginal photosynthetic costs of carnivory have been demonstrated but marginal photosynthetic benefits have not. A review of published data and results of ongoing research show that nitrogen, phosphorus, and potassium often (co-)limit growth of carnivorous plants and that photosynthetic nutrient use efficiency is 20 - 50 % of that of non-carnivorous plants. Assessments of stoichiometric relationships among limiting nutrients, scaling of leaf mass with photosynthesis and nutrient content, and photosynthetic nutrient use efficiency all suggest that carnivorous plants are at an energetic disadvantage relative to non-carnivorous plants in similar habitats. Overall, current data support some of the predictions of the cost-benefit model, fail to support others, and still others remain untested and merit future research. Rather than being an optimal solution to an adaptive problem, botanical carnivory may represent a set of limited responses constrained by both phylogenetic history and environmental stress. [source] Reassessing culture media and critical metabolites that affect adenovirus productionBIOTECHNOLOGY PROGRESS, Issue 1 2010Chun Fang Shen Abstract Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell-specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell-specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 × 106 cells/mL. In comparison, only 50% of reduction in the cell-specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 × 106 cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 × 106 cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] |