Home About us Contact | |||
Liquid Culture Medium (liquid + culture_medium)
Selected AbstractsHepatocyte dynamics in a three-dimensional rotating bioreactorJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 11 2007Mitsuo Miyazawa Abstract Background and Aims:, The use of an artificial liver system with extracorporeal circulation or a three-dimensional bioreactor perfused with liquid culture medium inevitably exposes hepatocytes to fluid mechanical stress (MS). The expression of liver-specific hepatocyte functions seems to be modulated by the magnitude of MS. Nonetheless, few studies have focused on the direct effects of MS on hepatocytes. We subjected hepatocytes to MS using an MS loading device and investigated the effects on the cytoskeleton and hepatocyte dynamics inside three-dimensional scaffolds by monitoring the changes in actin fiber, one of the components of the cytoskeleton. We also assessed the influence of MS on specific hepatocyte functions. Methods:, We subjected hepatocytes to MS by a rotating radial flow bioreactor (RRFB) and examined the effects by comparing the MS-loaded culture cells with cells cultured under stationary conditions without MS loading. The hepatocytes (1 × 106/cm3) were seeded on gauze without collagen coating and examined to determine morphological changes after 60 h incubation. Actin filaments in samples from the MS-loaded hepatocyte culture were stained by fluorescein isothiocyanate-labeled phalloidin. Results:, Hepatocyte aggregation was observed in the MS-loaded culture, but not in the unloaded stationary culture. Better albumin products were observed in the MS-loaded group than in the stationary culture group at all measurement points. Actin filaments extended toward the scaffold after the start of MS loading incubation and polymerized around the hepatocytes. The hepatocyte aggregation eventually advanced to the formation of spheroids. Conclusion:, These results suggest that MS-induced polymerization of actin filaments stimulate hepatocyte aggregation and thereby improve hepatocyte-specific function. [source] Inhibitory effect of phenolics extracted from sorghum genotypes on Aspergillus parasiticus (NRRL 2999) growth and aflatoxin productionJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2007CV Ratnavathi Abstract The inhibitory activity of bioactive polyphenols present in six sorghum genotypes,two red (AON 486 and IS 620), two yellow (LPJ and IS 17779) and two white (SPV 86 and SPV 462) varieties,on Aspergillus parasiticus (NRRL 2999) growth and aflatoxin production was evaluated. In the first experiment the production of aflatoxins in the six sorghum genotypes after removal of surface phenolics by acidic methanol treatment was studied and compared with that in untreated grains. Aflatoxin production was found to be fourfold higher in treated grains. The total phenols and bioactive polyphenols extracted by acidic methanol were quantified using the Folin,Denis method and the bovine serum albumin,benzidine conjugate procedure respectively. In the second experiment the effect of extracted sorghum phenolics under in vitro conditions on fungal growth and aflatoxin production was studied at two concentrations (0.01% and 0.1%) of phenolics. Extracted phenolics added to yeast extract sucrose (YES) medium at 0.1% concentration showed an inhibitory effect on aflatoxin production. At 0.01% phenolic concentration, aflatoxin production was minimal on day 3 after infection. At other time points the aflatoxin content was similar to that in the control. At 9 days after infection the fungal biomass in IS 620 was significantly lower than that in the control. At 0.1% phenolic concentration, aflatoxin production was minimal and the red genotype IS 620 showed maximum resistance. Fungal biomass was lowest at all growth stages in IS 620 as compared with the control. Polyphenol oxidase (PPO) activity was not detected in A. parasiticus grown on YES medium (control). PPO activity was not induced in A. parasiticus by the addition of phenolics to the liquid culture medium (no PPO activity was detected in the culture medium). The inhibitory activity of bioactive polyphenols could be attributed to the lack of PPO enzyme in this fungus. Copyright © 2007 Society of Chemical Industry [source] Melanin biosynthesis by Frankia strain CeI5PHYSIOLOGIA PLANTARUM, Issue 2 2007Wenlin Yuan Many Frankia strains are pigmented and presumed to produce melanin. However, melanin biosynthesis has yet to be rigorously characterized in Frankia. This study was initiated to determine whether or not Frankia strain CeI5 produced melanin and to identify the biochemical pathway of pigment production. Frankia strain CeI5 first produced a dark pigment in mycelial and other tissue and then in the liquid culture medium when grown in a defined medium containing l -tyrosine. The pigment resisted solvents, lightened when subjected to the action of oxidants, as well as reductants, and produced a flocculent brown precipitate with FeCl3. Spectroscopic characteristics of the extracted pigment were those of melanin. When subjected to gradual dilution, the absorbance decreased unevenly, occurring in the near red range first, then in the visible range, and lastly in the UV range. This observation might resolve the question of why quite different descriptions of melanin UV,visible light absorption spectra exist in the literature. The tyrosinase cofactor copper greatly enhanced melanin biosynthesis at 5.3 × 10,6 M, while 1 × 10,8 M 3,4-dihydroxy- l -phenylalanine hastened pigmentation. The copper-chelating agent KCN and the tyrosinase inhibitor tropolone decreased melanin production at the same concentration of 1 × 10,5 M. This evidence suggests that Frankia strain CeI5 produces melanin via the Raper and Mason pathway. [source] Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemanniiBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006Octavio Cruz-Uribe Abstract Microplantlets of the marine red macroalga Portieria hornemannii efficiently removed the explosive compound 2,4,6-trinitrotoluene (TNT) from seawater. Photosynthetic, axenic microplantlets (1.2 g FW/L) were challenged with enriched seawater medium containing dissolved TNT at concentrations of 1.0, 10, and 50 mg/L. At 22°C and initial TNT concentrations of 10 mg/L or less, TNT removal from seawater was 100% within 72 h, and the first-order rate constant for TNT removal ranged from 0.025 to 0.037 L/gFW h under both illuminated conditions (153 µE/m2s, 14:10 LD photoperiod) and dark conditions. Two immediate products of TNT biotransformation, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dintrotoluene, were identified in the liquid culture medium, with a maximum material balance recovery of 29 mole%. Only trace levels of these products and residual TNT were found within the fresh cell biomass. Removal of TNT by P. hornemannii microplantlets at initial concentrations of 1.0 or 10 mg/L did not affect the respiration rate. At an initial TNT concentration of 10 mg/L, net photosynthesis decreased towards zero, commensurate with the removal of dissolved TNT from seawater, whereas at an initial TNT concentration of 1.0 mg/L, the net photosynthesis rate was not affected. © 2005 Wiley Periodicals, Inc. [source] |