Home About us Contact | |||
Lipocalin Family (lipocalin + family)
Selected AbstractsBinding of the volatile general anesthetics halothane and isoflurane to a mammalian ,-barrel proteinFEBS JOURNAL, Issue 2 2005Jonas S. Johansson A molecular understanding of volatile anesthetic mechanisms of action will require structural descriptions of anesthetic,protein complexes. Porcine odorant binding protein is a 157 residue member of the lipocalin family that features a large ,-barrel internal cavity (515 ± 30 Å3) lined predominantly by aromatic and aliphatic residues. Halothane binding to the ,-barrel cavity was determined using fluorescence quenching of Trp16, and a competitive binding assay with 1-aminoanthracene. In addition, the binding of halothane and isoflurane were characterized thermodynamically using isothermal titration calorimetry. Hydrogen exchange was used to evaluate the effects of bound halothane and isoflurane on global protein dynamics. Halothane bound to the cavity in the ,-barrel of porcine odorant binding protein with dissociation constants of 0.46 ± 0.10 mm and 0.43 ± 0.12 mm determined using fluorescence quenching and competitive binding with 1-aminoanthracene, respectively. Isothermal titration calorimetry revealed that halothane and isoflurane bound with Kd values of 80 ± 10 µm and 100 ± 10 µm, respectively. Halothane and isoflurane binding resulted in an overall stabilization of the folded conformation of the protein by ,0.9 ± 0.1 kcal·mol,1. In addition to indicating specific binding to the native protein conformation, such stabilization may represent a fundamental mechanism whereby anesthetics reversibly alter protein function. Because porcine odorant binding protein has been successfully analyzed by X-ray diffraction to 2.25 Å resolution [1], this represents an attractive system for atomic-level structural studies in the presence of bound anesthetic. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules. [source] Molecular interactions of the neuronal GPI-anchored lipocalin LazarilloJOURNAL OF MOLECULAR RECOGNITION, Issue 5 2008Diego Sanchez Abstract Lazarillo, a glycoprotein involved in axon growth and guidance in the grasshopper embryo, is the only member of the lipocalin family that is attached to the cell surface by a GPI anchor. Recently, the study of Lazarillo homologous genes in Drosophila and mouse has revealed new functions in the regulation of lifespan, stress resistance and neurodegeneration. Here we report an analysis of biochemical properties of Lazarillo to gain insight into the molecular basis of its physiological function. Recombinant forms of the grasshopper protein were expressed in two different systems to test: (1) potential binding of several hydrophobic ligands; (2) protein,protein homophilic interactions; and (3) whether interaction with the function-blocking mAb 10E6 interferes with ligand binding. We tested 10 candidate ligands (retinoic acid, heme, bilirubin, biliverdin, ecdysterone, juvenile hormone, farnesol, arachidonic acid, linoleic acid and palmitic acid), and monitored binding using electrophoretic mobility shift, absorbance spectrum, and fluorimetry assays. Our work indicates binding to heme and retinoic acid, resulting in increased electrophoretic mobility, as well as to fatty acids, resulting in multimerization. Retinoic acid and fatty acids binding were confirmed by fluorescence titration, and heme binding was confirmed with absorbance spectrum assays. We demonstrate that Lazarillo oligomerizes in solution and can form clusters in the plasma membrane when expressed and GPI-anchored to the cell surface, however it is unable to mediate cell,cell adhesion. Finally, by ligand-mAb competition experiments we show that ligand-binding alone cannot be the key factor for Lazarillo to perform its function during axonal growth in the grasshopper embryo. Copyright © 2008 John Wiley & Sons, Ltd. [source] Resolution of ligand positions by site-directed tryptophan fluorescence in tear lipocalinPROTEIN SCIENCE, Issue 2 2000Oktay K. Gasymov Abstract The lipocalin superfamily of proteins functions in the binding and transport of a variety of important hydrophobic molecules. Tear lipocalin is a promiscuous lipid binding member of the family and serves as a paradigm to study the molecular determinants of ligand binding. Conserved regions in the lipocalins, such as the G strand and the F-G loop, may play an important role in ligand binding and delivery. We studied structural changes in the G strand of holo- and apo-tear lipocalin using spectroscopic methods including circular dichroism analysis and site-directed tryptophan fluorescence. Apo-tear lipocalin shows the same general structural characteristics as holo-tear lipocalin including alternating periodicity of a ,-strand, orientation of amino acid residues 105, 103, 101, and 99 facing the cavity, and progressive depth in the cavity from residues 105 to 99. For amino acid residues facing the internal aspect of cavity, the presence of a ligand is associated with blue shifted spectra. The collisional rate constants indicate that these residues are not less exposed to solvent in holo-tear lipocalin than in apo-tear lipocalin. Rather the spectral blue shifts may be accounted for by a ligand induced rigidity in holo-TL. Amino acid residues 94 and 95 are consistent with positions in the F-G loop and show greater exposure to solvent in the holo- than the apo-proteins. These findings are consistent with the general hypothesis that the F-G loop in the holo-proteins of the lipocalin family is available for receptor interactions and delivery of ligands to specific targets. Site-directed tryptophan fluorescence was used in combination with a nitroxide spin labeled fatty acid analog to elucidate dynamic ligand interactions with specific amino acid residues. Collisional quenching constants of the nitroxide spin label provide evidence that at least three amino acids of the G strand residues interact with the ligand. Stern-Volmer plots are inconsistent with a ligand that is held in a static position in the calyx, but rather suggest that the ligand is in motion. The combination of site-directed tryptophan fluorescence with quenching by nitroxide labeled species has broad applicability in probing specific interactions in the solution structure of proteins and provides dynamic information that is not attainable by X-ray crystallography. [source] A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavityACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2009Daniel A. Breustedt Tear lipocalin (TLC) with the bound artificial ligand 1,4-butanediol has been crystallized in space group P21 with four protein molecules in the asymmetric unit and its X-ray structure has been solved at 2.6,Å resolution. TLC is a member of the lipocalin family that binds ligands with diverse chemical structures, such as fatty acids, phospholipids and cholesterol as well as microbial siderophores and the antibiotic rifampin. Previous X-ray structural analysis of apo TLC crystallized in space group C2 revealed a rather large bifurcated ligand pocket and a partially disordered loop region at the entrace to the cavity. Analysis of the P21 crystal form uncovered major conformational changes (i) in ,-strands B, C and D, (ii) in loops 1, 2 and 4 at the open end of the ,-barrel and (iii) in the extended C-terminal segment, which is attached to the ,-barrel via a disulfide bridge. The structural comparison indicates high conformational plasticity of the loop region as well as of deeper parts of the ligand pocket, thus allowing adaptation to ligands that differ vastly in size and shape. This illustrates a mechanism for promiscuity in ligand recognition which may also be relevant for some other physiologically important members of the lipocalin protein family. [source] The X-ray structure of a recombinant major urinary protein at 1.75,Å resolution.ACTA CRYSTALLOGRAPHICA SECTION D, Issue 12 2001A comparative study of X-ray, NMR-derived structures Major urinary proteins belong to the lipocalin family and are present in the urine of rodents as an ensemble of isoforms with pheromonal activity. The crystal structure of a recombinant mouse MUP (rMUP) was solved by the molecular-replacement technique and refined to an R factor and Rfree of 20 and 26.5%, respectively, at 1.75,Å resolution. The structure was compared with an NMR model and with a crystallographic structure of the wild-type form of the protein. The crystal structures determined in different space groups present significantly smaller conformational differences amongst themselves than in comparison with NMR models. Some, but not all, of the conformational differences between the crystal and solution structures can be explained by the influence of crystallographic contacts. Most of the differences between the NMR and X-ray structures were found in the N-terminus and loop regions. A number of side chains lining the hydrophobic pocket of the molecule are more tightly packed in the NMR structure than in the crystallographic model. Surprisingly, clear and continuous electron density for a ligand was observed inside the hydrophobic pocket of this recombinant protein. Conformation of the ligand modelled inside the density is coherent with the results of recent NMR experiments. [source] |