Home About us Contact | |||
Lipid Storage (lipid + storage)
Terms modified by Lipid Storage Selected AbstractsAdipocyte prolactin: regulation of release and putative functionsDIABETES OBESITY & METABOLISM, Issue 4 2007T. Brandebourg Pituitary-derived prolactin (PRL) is a well-known regulator of the lactating mammary gland. However, the recent discovery that human adipose tissue produces PRL as well as expresses the PRL receptor (PRLR) highlights a previously unappreciated action of PRL as a cytokine involved in adipose tissue function. Biologically active PRL is secreted by all adipose tissue depots examined: breast, visceral and subcutaneous. The expression of adipose PRL is regulated by a non-pituitary, alternative superdistal promoter. PRL expression and release increases during early pre-adipocyte differentiation and is stimulated by cyclic AMP activators, including , adrenergic receptor agonists. PRL release from subcutaneous adipose explants is attenuated during obesity, suggesting that adipose PRL production is altered by the metabolic state. Several lines of evidence indicate that PRL suppresses lipid storage as well as the release of adipokines such as adiponectin, interleukin-6 and possibly leptin. PRL has also been implicated in the regulation of adipogenesis. A newly developed PRL-secreting human adipocyte cell line, LS14, should allow comprehensive examination of the regulation and function of adipocyte-derived PRL. Collectively, these studies raise the prospect that PRL affects energy homeostasis through its action as an adipokine and is involved in the manifestation of insulin resistance. [source] Tissue-specific distribution and whole-body burden estimates of persistent organic pollutants in the bottlenose dolphin (Tursiops truncatus)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2010Jennifer E. Yordy Abstract Most exposure assessments for free-ranging cetaceans focus on contaminant concentrations measured in blubber, and few data are available for other tissues or the factors governing contaminant distribution among tissues. The goal of this study was to provide a detailed description of the distribution of persistent organic pollutants (POPs) within the common bottlenose dolphin (Tursiops truncatus) body and assess the role of lipid dynamics in mediating contaminant distribution. Thirteen tissues (brain, blubber, heart, liver, lung, kidney, mammary gland, melon, skeletal muscle, spleen, thyroid, thymus, and testis/uterus) were sampled during necropsy from bottlenose dolphins (n,=,4) and analyzed for lipid and 85 POPs, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers. Significant correlations between tissue POP concentrations and lipid suggest that distribution of POPs is generally related to tissue lipid content. However, blubber:tissue partition coefficients ranged widely from 0.753 to 6.25, suggesting that contaminant distribution is not entirely lipid-dependent. Tissue-specific and whole-body contaminant burdens confirmed that blubber, the primary site of metabolic lipid storage, is also the primary site for POP accumulation, contributing >90% to the whole-body burdens. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue concentrations. These results suggest that individuals with reduced blubber lipid may be at increased risk for exposure-related health effects. However, this study also provides evidence that the melon, a metabolically inert lipid-rich structure, may serve as an alternate depot for POPs, thus preventing the bulk of blubber contaminants from being directly available to other tissues. This unique physiological adaptation should be taken into consideration when assessing contaminant-related health effects in wild cetacean populations. Environ. Toxicol. Chem. 2010;29:1263,1273. © 2010 SETAC [source] Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP)JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 4 2005T.H. Kim Summary ADRP plays an important role in regulating lipid storage in various cells. We investigated the ADRP gene as a candidate gene for intramuscular fat deposition and marbling traits in pigs. A full-length transcript of porcine ADRP was cloned by RT-PCR and RACE. The porcine ADRP cDNA (1848 bp) contains a 1377-bp open reading frame, encoding a deduced protein of 459 amino acids, which has amino acid sequence identities of 89, 89, 82 and 81% with cattle, human, mouse and rat ADRP genes respectively. The genomic structure and sequence of the porcine ADRP were also analysed using a BAC clone of a Korean native pig. Pig ADRP comprises eight exons spanning approximately 13 kb and is located on chromosome 1 q2.3-q2.7 between microsatellite markers SW2185 and SW974. Several sequence variations were detected from nine different pig breeds. The biological role of this gene and the mapping localization indicated that the porcine ADRP is a possible candidate gene for fat deposition and marbling traits. [source] SIRT6 protects against pathological damage caused by diet-induced obesityAGING CELL, Issue 2 2010Yariv Kanfi Summary The NAD+-dependent SIRT6 deacetylase is a therapeutic candidate against the emerging metabolic syndrome epidemic. SIRT6, whose deficiency in mice results in premature aging phenotypes and metabolic defects, was implicated in a calorie restriction response that showed an opposite set of phenotypes from the metabolic syndrome. To explore the role of SIRT6 in metabolic stress, wild type and transgenic (TG) mice overexpressing SIRT6 were fed a high fat diet. In comparison to their wild-type littermates, SIRT6 TG mice accumulated significantly less visceral fat, LDL-cholesterol, and triglycerides. TG mice displayed enhanced glucose tolerance along with increased glucose-stimulated insulin secretion. Gene expression analysis of adipose tissue revealed that the positive effect of SIRT6 overexpression is associated with down regulation of a selective set of peroxisome proliferator-activated receptor-responsive genes, and genes associated with lipid storage, such as angiopoietin-like protein 4, adipocyte fatty acid-binding protein, and diacylglycerol acyltransferase 1, which were suggested as potential targets for drugs to control metabolic syndrome. These results demonstrate a protective role for SIRT6 against the metabolic consequences of diet-induced obesity and suggest a potentially beneficial effect of SIRT6 activation on age-related metabolic diseases. [source] Energy allocation in juvenile sablefish: effects of temperature, ration and body sizeJOURNAL OF FISH BIOLOGY, Issue 3 2004S. M. Sogard The lipid deposition of juvenile sablefish Anoplopoma fimbria was examined, in particular, the changes in allocation over time. Growth rates of early juveniles (initial size 36,50 mm total length, LT) were manipulated using two temperatures (10 and 20° C) and two rations (ad libitum and 3,4% body mass day,1). Fish LT, mass and lipid content were measured every 3 weeks for 15 weeks. Irrespective of treatment, the relationship of total lipid content with body size was clearly hyperallometric; small juveniles allocated relatively more energy to growth and less to lipid storage than large juveniles. After adjusting for the influence of body size, temperature and ration significantly influenced body composition but these effects varied over the course of the experiment. In the first 3 week time period, fish on the high ration, high temperature treatment had reduced lipid storage relative to other treatments, but in all subsequent time periods their lipid concentrations were similar to or higher than those of fish on other treatments. In contrast, fish held at low rations and low temperatures initially had average levels of lipid concentration, but after 6 weeks their levels were lower than other treatments. Estimation of allocation to lipid storage over time (proportion of dry mass increase comprised of lipid) suggested that fish in all of the treatments were approaching an asymptotic level of lipid concentration (c. 50,60% of dry mass) but with different rates of lipid increase. Within a treatment, it was predicted that individual differences in allocation would result in trade-offs between somatic growth and storage. This trade-off was evident only for fish held on low rations at low temperatures. In contrast, fish held on high rations at high temperatures exhibited the opposite pattern of a positive correlation between somatic growth and storage. These results suggest that lipostatic regulation of appetite is unlikely in juvenile sablefish. When resources are unlimited, this species appears to adopt a maximizing strategy for both somatic growth and lipid accumulation. [source] CARS microscopy of lipid stores in yeast: the impact of nutritional state and genetic backgroundJOURNAL OF RAMAN SPECTROSCOPY, Issue 7 2009Christian Brackmann Abstract We have developed a protocol for sub-micrometer resolved and chemically specific imaging of lipid storage in vivo employing coherent anti-Stokes Raman scattering (CARS) microscopy of one of the most important model organisms Saccharomyces cerevisiae,the yeast cell. By probing the carbon,hydrogen vibration using the nonlinear process of CARS, lipid droplets in the yeast cells clearly appear, as confirmed by comparative studies on relevant labeled organelles using two-photon fluorescence microscopy. From the images, unique quantitative data can be deduced with high three-dimensional resolution, such as the volume, shape, number, and intracellular location of the neutral lipid stores. We exemplify the strength and usability of the method for two cases: the impact on lipid storage of the nutritional condition (starvation and type of carbon source available) as well as of genetic modification of two fundamental metabolic regulation pathways involving carbohydrate and lipid storage (BCY1 and DGA1, LRO1, ARE1/2 deletions), respectively. While the impact of carbon source on the total cellular lipid volume was minimal, long-term starvation induces a significant accumulation of lipid droplets. We also confirm that the lipid-storage-deficient mutant is indeed unable to synthesize lipid droplets, and that the inability of the bcy1 -mutant to store carbohydrates is compensated by a two-fold increase in stored neutral lipids. We note that there is a significant cell-to-cell variability in neutral lipid storage in general, i.e. that there is a correspondence to the noise found for gene expression also in lipidomics. Copyright © 2009 John Wiley & Sons, Ltd. [source] Early pulmonary involvement in Niemann-Pick type B disease: Lung lavage is not usefulPEDIATRIC PULMONOLOGY, Issue 2 2005Z.S. Uyan MD Abstract Niemann-Pick disease (NPD) is a rare, autosomal-recessively inherited lipid storage disease which is characterized by intracellular deposition of sphingomyelin in various body tissues. The disease is heterogeneous and classified into six groups. Pulmonary parenchymal involvement may be a feature of several subtypes of NPD, including type B. Progressive pulmonary involvement in NPD type B is a major cause of morbidity and mortality. It is usually diagnosed at older ages. Only a few cases with early pulmonary involvement have been reported. In this report, a patient with NPD type B, hospitalized with the diagnosis of pneumonia at age 3 months, is presented. Following treatment for pneumonia, she continued to have persistent respiratory symptoms and became oxygen-dependent. High-resolution computed tomography of the chest revealed diffuse interstitial changes. During follow-up, the patient developed hepatosplenomegaly. Lung, liver, and bone marrow biopsies showed characteristic findings for NPD. Biochemical studies also confirmed the diagnosis, and the sphingomyelinase enzyme level of the patient was low. Unilateral lung lavage was performed in order to decrease lipid storage as a treatment modality. However, there was no clinical or radiological improvement. The patient died at age 15 months due to progressive respiratory failure. Pulmonary involvement is a rare entity in early childhood in patients with NPD type B, but should be considered in the differential diagnosis of persistent interstitial lung disease. It may cause progressive respiratory failure, but the treatment options remain limited. Pediatr Pulmonol. 2005; 40:169,172. © 2005 Wiley-Liss, Inc. [source] Effects of tail autotomy on survival, growth and territory occupation in free-ranging juvenile geckos (Oedura lesueurii)AUSTRAL ECOLOGY, Issue 4 2006JONATHAN K. WEBB Abstract Many animals autotomize their tails to facilitate escape from predators. Although tail autotomy can increase the likelihood of surviving a predatory encounter, it may entail subsequent costs, including reduced growth, loss of energy stores, a reduction in reproductive output, loss of social status and a decreased probability of survival during subsequent encounters with predators. To date, few studies have investigated the potential fitness costs of tail autotomy in natural populations. I investigated whether tail loss influenced survival, growth and territory occupation of juvenile velvet geckos Oedura lesueurii in a population where predatory snakes were common. During the 3-year mark,recapture study, 32% of juveniles voluntarily autotomized their tails when first captured. Analysis of survival using the program mark showed that voluntary tail autotomy did not influence the subsequent survival of juvenile geckos. Survival was age-dependent and was higher in 1-year-old animals (0.98) than in hatchlings (0.76), whereas recapture probabilities were time-dependent. Growth rates of tailed and tailless juveniles were very similar, but tailless geckos had slow rates of tail regeneration (0.14 mm day,1). Tail autotomy did not influence rock usage by geckos, and both tailed and tailless juveniles used few rocks as diurnal retreat sites (means of 1.64 and 1.47 rocks, respectively) and spent long time periods (85 and 82 days) under the same rocks. Site fidelity may confer survival advantages to juveniles in populations sympatric with ambush foraging snakes. My results show that two potential fitness costs of tail autotomy , decreased growth rates and a lower probability of survival , did not occur in juveniles from this population. However, compared with juveniles, significantly fewer adult geckos (17%) voluntarily autotomized their tails during capture. Because adults possess large tails that are used for lipid storage, the energetic costs of tail autotomy are likely to be much higher in adult than in juvenile O. lesueurii. [source] Host cell lipids control cholesteryl ester synthesis and storage in intracellular ToxoplasmaCELLULAR MICROBIOLOGY, Issue 6 2005Yoshifumi Nishikawa Summary The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1, and TgACAT1, in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1, and TgACAT1, preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1, or TgACAT1, are restored in their capability of cholesterol esterification. TgACAT1, produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1, mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells. [source] |