Home About us Contact | |||
Lipid Rafts (lipid + raft)
Terms modified by Lipid Rafts Selected AbstractsThe different forms of PNS myelin P0 protein within and outside lipid raftsJOURNAL OF NEUROCHEMISTRY, Issue 1 2008Anna Fasano Abstract It is now well established that plasma membranes, such as the myelin sheath, are made of different microdomains with different lipid and protein composition. Lipid rafts are made mainly of sphingolipids and cholesterol, whereas the non-raft regions are made mainly of phosphoglycerides. Most myelin proteins may distribute themselves in raft and non-raft microdomains but the driving force that gives rise to their different distribution is not known yet. In this paper, we have studied the distribution of protein zero (P0), the most representative protein of PNS myelin, in the membrane microdomains. To this end, we have purified P0 from both non-raft (soluble P0, P0-S) and raft (P0-R) regions of PNS. Purified proteins were analyzed by two-dimensional gel electrophoresis and identified and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A detailed structural description of the two P0 forms is given in terms of amino acid sequence, post-translational modifications, and composition of associated lipids. Our findings suggest that structural differences between the two proteins, mainly related to the glycogroups, might be responsible for their different localization. [source] Increased phosphorylation and redistribution of NMDA receptors between synaptic lipid rafts and post-synaptic densities following transient global ischemia in the rat brainJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Shintaro Besshoh Abstract Ischemia results in increased phosphorylation of NMDA receptors. To investigate the possible role of lipid rafts in this increase, lipid rafts and post-synaptic densities (PSDs) were isolated by the extraction of rat brain synaptosomes with Triton X-100 followed by sucrose density gradient centrifugation. Lipid rafts accounted for the majority of PSD-95, whereas SAP102 was predominantly located in PSDs. Between 50 and 60% of NMDA receptors were associated with lipid rafts. Greater than 85,90% of Src and Fyn were present in lipid rafts, whereas Pyk2 was mainly associated with PSDs. Lipid rafts and PSDs were isolated from animals subjected to 15 min of global ischemia followed by 6 h of recovery. Ischemia did not affect the yield, density, flotillin-1 or cholesterol content of lipid rafts. Following ischemia, the phosphorylation of NR1 by protein kinase C and tyrosine phosphorylation of NR2A and NR2B was increased in both lipid rafts and PSDs, with a greater increase in tyrosine phosphorylation occurring in the raft fraction. Following ischemia, NR1, NR2A and NR2B levels were elevated in PSDs and reduced in lipid rafts. The findings are consistent with a model involving close interaction between lipid rafts and PSDs and a role for lipid rafts in ischemia-induced signaling pathways. [source] Lipid rafts are required in G,i signaling downstream of the P2Y12 receptor during ADP-mediated platelet activationJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 5 2005T. M. QUINTON Summary., ADP is important in propagating hemostasis upon its secretion from activated platelets in response to other agonists. Lipid rafts are microdomains within the plasma membrane that are rich in cholesterol and sphingolipids, and have been implicated in the stimulatory mechanisms of platelet agonists. We sought to determine the importance of lipid rafts in ADP-mediated platelet activation via the G protein-coupled P2Y1 and P2Y12 receptors using lipid raft disruption by cholesterol depletion with methyl- , -cyclodextrin. Stimulation of cholesterol-depleted platelets with ADP resulted in a reduction in the extent of aggregation but no difference in the extent of shape change or intracellular calcium release. Furthermore, repletion of cholesterol to previously depleted membranes restored ADP-mediated platelet aggregation. In addition, P2Y12-mediated inhibition of cAMP formation was significantly decreased upon cholesterol depletion from platelets. Stimulation of cholesterol-depleted platelets with agonists that depend upon G,i activation for full activation displayed significant loss of aggregation and secretion, but showed restoration when simultaneously stimulated with the G,z -coupled agonist epinephrine. Finally, G,i preferentially localizes to lipid rafts as determined by sucrose density centrifugation. We conclude that G,i signaling downstream of P2Y12 activation, but not G,q or G,z signaling downstream of P2Y1 or ,2A activation, respectively, has a requirement for lipid rafts that is necessary for its function in ADP-mediated platelet activation. [source] Proteomic analysis of detergent-resistant membranes from Candida albicansPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue S1 2006María Insenser Abstract Lipid rafts are membrane microdomains with a higher amount of saturated fatty acids and sterols than the rest of the membrane. They are more resistant to the action of non-anionic detergents, and are called, for this reason, detergent-resistant membranes (DRMs). Lipid rafts are involved in many cellular processes, like signaling, cytokinesis, response to environment, etc., and therefore must contain important proteins. We have obtained a fraction enriched in proteins from Candida albicans DRMs. The sample has been analyzed by SDS-PAGE and 29 proteins have been identified including markers for lipid rafts in Saccharomyces cerevisiae, like Pma1p and a glycosylphosphatidylinositol (GPI)-anchored protein belonging to the Phr family. Ecm33p, a GPI-anchored protein involved in cell wall biogenesis, has been found for the first time in lipid rafts. We have also identified proteins implicated in protein glycosylation, like the mannosyltransferases Mnn7p, Pmt2p and Mnt1p; proteins involved in lipid metabolism, like Erg11p and Scs7p; and heat shock proteins, like Ssa1p and Hsp90p. Most of the proteins identified are located in plasma, mitochondrial, Golgi or ER membranes, supporting the postulated existence of lipid-raft domains in all the membranes. [source] Enemy at the gates: traffic at the plant cell pathogen interfaceCELLULAR MICROBIOLOGY, Issue 12 2008Caroline Hoefle Summary The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface. [source] A Two-Photon Fluorescent Probe for Lipid Raft Imaging: C-LaurdanCHEMBIOCHEM, Issue 5 2007Hwan Myung Kim Abstract The lipid-rafts hypothesis proposes that naturally occurring lipid aggregates exist in the plane of membrane that are involved in signal transduction, protein sorting, and membrane transport. To understand their roles in cell biology, a direct visualization of such domains in living cells is essential. For this purpose, 6-dodecanoyl-2-(dimethylamino)naphthalene (laurdan), a membrane probe that is sensitive to the polarity of the membrane, has often been used. We have synthesized and characterized 6-dodecanoyl-2-[N -methyl- N -(carboxymethyl)amino]naphthalene (C-laurdan), which has the advantages of greater sensitivity to the membrane polarity, a brighter two-photon fluorescence image, and reflecting the cell environment more accurately than laurdan. Lipid rafts can be visualized by two-photon microscopy by using C-laurdan as a probe. Our results show that the lipid rafts cover 38,% of the cell surface. [source] Mechanisms for recycling and biosynthesis of endogenous cannabinoids anandamide and 2-arachidonylglycerolJOURNAL OF NEUROCHEMISTRY, Issue 4 2008Ekaterina A. Placzek Abstract The mechanisms of endogenous cannabinoid biosynthesis are not completely understood. We hypothesized that anandamide could be recycled by the cell to form new endocannabinoid molecules and released into the extracellular space. We determined that new endocannabinoids derived from exogenous anandamide or arachidonic acid were synthesized and released from RBL-2H3 cells in response to ionomycin. Treatment of RBL-2H3 cells with nystatin and progesterone, agents that disrupt organization of lipid raft/caveolae, resulted in the attenuation of anandamide and 2-arachidonyl glycerol synthesis and/or release in response to stimulation with ionomycin suggesting a role for these membrane microdomains in endocannabinoid biosynthesis. Furthermore, anandamide synthesis may be independent of N -acyl phosphatidylethanolamine phospholipase D as expression of the enzyme was not detected in RBL-2H3 cells. We also established that extracellular calcium is necessary for endocannabinoid biosynthesis because release of intracellular calcium stores alone does not promote endocannabinoid biosynthesis. Next, we examined the role of calcium as a ,switch' to activate the synthesis of anandamide and simultaneously reduce uptake. Indeed, [3H] anandamide uptake was reduced in the presence of calcium. Our findings suggest a mechanism indicative of calcium-modulated activation of anandamide synthesis and simultaneous termination of uptake. [source] Lipid-mediated presentation of MHC class II molecules guides thymocytes to the CD4 lineageEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2009Satoshi Komaniwa Abstract Previous studies on the MHC class-specific differentiation of CD4+CD8+ thymocytes into CD4+ and CD8+ T cells have focused on the role of coreceptor molecules. However, CD4 and CD8 T cells develop according to their MHC class specificities even in these mice lacking coreceptors. This study investigated the possibility that lineage is determined not only by coreceptors, but is also guided by the way how MHC molecules are presented. MHC class II molecules possess a highly conserved Cys in their transmembrane domain, which is palmitoylated and thereby associates with lipid rafts, whereas neither palmitoylation nor raft association was observed with MHC class I molecules. The generation of CD4 T cells was impaired and that of CD8 T cells was augmented when the rafts on the thymic epithelial cells were disrupted. This was due to the conversion of MHC class II-specific thymocytes from the CD4 lineage to CD8. The ability of I-Ad molecule to associate with rafts was lost when its transmembrane Cys was replaced. The development of DO11.10 thymocytes recognizing this mutant I-Adm was converted from CD4 to CD8. These results suggest that the CD4 lineage commitment is directed by the raft-associated presentation of MHC class II molecules. [source] Recombinase-deficient T cell development by selective accumulation of CD3 into lipid raftsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2008Denise Ferrera Abstract The pre-T cell receptor (pre-TCR) promotes the development of thymocytes with productive rearrangement at the TCR ,,chain locus by signaling in a ligand-independent fashion. The TCR ,,chain associates with the invariant pre-T, (pT,) chain, which bears specific charged residues in the extracellular portion mediating pre-TCR self-oligomerization. In recombinase-deficient thymocytes, calnexin (CNX) associated with CD3 chains is inefficiently retained in the endoplasmic reticulum (ER) and weakly expressed in the plasma membrane. Deliberate cross-linking of CNX/CD3 complexes mimics pre-TCR signaling. Here, we show that, analogously to the pT, chain, surface CNX is palmitoylated and that CD3 prominently accumulated in lipid rafts upon cross-linking. Mutant CNX isoforms devoid of ER retention determined pre-TCR-like signaling and simulated ,,selection only when stably translocating CD3 to lipid rafts. Inclusion of the palmitoylated cytoplasmic tail from the pT, chain in recombinant CNX strikingly improved the pre-TCR-like signaling efficiency of CNX/CD3 in rafts. This study indicates that lipid rafts in the plasma membrane represent proficient microdomains for the initiation of pre-TCR signaling, and supports the view that ,,selection by oligomerized pre-TCR is implemented by the pT, cytoplasmic tail. [source] T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by LckEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2003Elisabetta Soldaini Abstract Binding of the hepatitis C virus (HCV) envelope protein E2 to CD81 provides a costimulatory signal for human T cells. This phenomenon may play a role in liver damage and autoimmune manifestations associated with HCV infection. Here we show that cross-linking of CD81 by HCV E2 induced a calcium flux in T cells that depends on Lck since it was blocked by PP1 and absent in Lck-deficient Jurkat T cells. In wild-type Jurkat cells, Lck was activated by CD81 cross-linking, and CD81, like Lck, was found in lipid rafts. Indeed, the integrity of the raft compartment was required for the induction of a calcium flux by E2, since methyl-,-cyclodextrin abolished this response. A requirement for TCR/CD3 expression was indicated by the absence of a calcium flux following E2 stimulation of TCR/CD3-deficient Jurkat cells. CD81 cross-linking increased and prolonged the anti-CD3-induced tyrosine phosphorylation of TCR, and of other proteins, indicating that the CD81-mediated signal converges with the TCR/CD3 signaling cascade at its most upstream step. In conclusion, we propose that the costimulatory effects of HCV E2 on T cells depend on CD81 cross-linking that activates Lck through raft aggregation and thus leads to enhanced TCR signaling. [source] Caveolin-1 influences P2X7 receptor expression and localization in mouse lung alveolar epithelial cellsFEBS JOURNAL, Issue 12 2007K. Barth The P2X7 receptor has recently been described as a marker for lung alveolar epithelial type I cells. Here, we demonstrate both the expression of P2X7 protein and its partition into lipid rafts in the mouse lung alveolar epithelial cell line E10. A significant degree of colocalization was observed between P2X7 and the raft marker protein Caveolin-1; also, P2X7 protein was associated with caveolae. A marked reduction in P2X7 immunoreactivity was observed in lung sections prepared from Caveolin-1-knockout mice, indicating that Caveolin-1 expression was required for full expression of P2X7 protein. Indeed, suppression of Caveolin-1 protein expression in E10 cells using short hairpin RNAs resulted in a large reduction in P2X7 protein expression. Our data demonstrate a potential interaction between P2X7 protein and Caveolin-1 in lipid rafts, and provide a basis for further functional and biochemical studies to probe the physiologic significance of this interaction. [source] Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes,GLIA, Issue 9 2009M. R. Bryant Abstract Fibroblast growth factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute to the regulation of oligodendrocyte (OL) function. To understand the mechanisms by which FGFRs elicit these cellular responses, we investigated the phosphorylation of signal transduction proteins and the role of cholesterol-glycosphingolipid-enriched "lipid raft" microdomains in differentiated OLs. Surprisingly, we found that the most abundant tyrosine-phosphorylated protein in OLs was the 120-kd isoform of FGFR2 and that it was phosphorylated even in the absence of FGF2, suggesting a potential ligand-independent function for this receptor. Furthermore, FGFR2, but not FGFR1, was associated with lipid raft microdomains in OLs and myelin (but not in astrocytes). This provides the first evidence for the association of FGFR with TX-100-insoluble lipid raft fractions. FGFR2 phosphorylated the key downstream target, FRS2 in OLs. Raft disruption resulted in loss of phosphorylated FRS2 from lipid rafts, coupled with the loss of Akt but not of Mek or Erk phosphorylation. This suggests that FGFR2-FRS2 signaling in lipid rafts operates via the PI3-Kinase/Akt pathway rather than the Ras/Mek/Erk pathway, emphasizing the importance of microenvironments within the cell membrane. Also present in lipid rafts in OLs and myelin, but not in astrocytes, was a novel 52-kd isoform of FGFR2 that lacked the extracellular ligand-binding region. These results demonstrate that FGFR2 in OLs and myelin possess unique characteristics that are specific both to receptor type and to OLs and provide a novel mechanism to elicit distinct cellular responses that mediate both FGF-dependent and -independent functions. © 2008 Wiley-Liss, Inc. [source] Rafts in oligodendrocytes: Evidence and structure,function relationshipGLIA, Issue 6 2006Ellen Gielen Abstract The plasma membrane of eukaryotic cells exhibits lateral inhomogeneities, mainly containing cholesterol and sphingomyelin, which provide liquid-ordered microdomains (lipid "rafts") that segregate membrane components. Rafts are thought to modulate the biological functions of molecules that become associated with them, and as such, they appear to be involved in a variety of processes, including signal transduction, membrane sorting, cell adhesion and pathogen entry. Although still a matter of ongoing debate, evidence in favor of the presence of these microdomains is gradually accumulating but a consensus on issues like their size, lifetime, composition, and biological significance has yet to be reached. Here, we provide an overview of the evidence supporting the presence of rafts in oligodendrocytes, the myelin-producing cells of the central nervous system, and discuss their functional significance. The myelin membrane differs fundamentally from the plasma membrane, both in lipid and protein composition. Moreover, since myelin membranes are unusually enriched in glycosphingolipids, questions concerning the biogenesis and functional relevance of microdomains thus appear of special interest in oligodendrocytes. The current picture of rafts in oligodendrocytes is mainly based on detergent methods. The robustness of such data is discussed and alternative methods that may provide complementary data are indicated. © 2006 Wiley-Liss, Inc. [source] Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methodsIMMUNOLOGY, Issue 1 2010Dylan M. Owen Summary Lipids and lipid domains are suggested to play an essential role in the heterogeneous organization of the plasma membrane in eukaryotic cells, including cells of the immune system. We summarize the results of advanced imaging and physical studies of membrane organization with special focus on the plasma membrane of lymphocytes. We provide a comprehensive up-to-date view on the existence of membrane lipid and protein clusters such as lipid rafts and suggest research directions to better understand these highly dynamic entities on the surface of immune cells. [source] Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsivenessIMMUNOLOGY, Issue 4 2007M. Maximina Bertha Moreno-Altamirano Summary Monocytes constitute 5,10% of total human peripheral blood leucocytes and remain in circulation for several days before replenishing the tissue macrophage populations. Monocytes display heterogeneity in size, granularity and nuclear morphology, and in the expression of cell membrane molecules, such as CD14, CD16, CD32, CD64, major histocompatibility complex class II, CCR2, CCR5, among others. This has led to the suggestion that individual monocyte/macrophage populations have specialized functions within their microenvironments. This study provides evidence for the occurrence of two peripheral blood monocyte subpopulations on the basis of their differential expression of GM1, a sphingolipid found mostly in lipid rafts, a CD14+ GM1low population and a CD14+ GM1high population comprising about 97·5% and 2·5% of total CD14+ cells, respectively. GM1 expression correlates with functional differences in terms of endocytic activity, susceptibility to mycobacterial infection, and response to lipopolysaccharide (LPS) (modulation of Toll-like receptor-4 expression). CD14+ GM1low cells proved to be less endocytic and more responsive to LPS, whereas CD14+ GM1high cells are more endocytic and less responsive to LPS. In addition, during monocyte to macrophage differentiation in vitro, the percentage of CD14+ GM1high cells increases from about 2·5% at day 1 to more than 50% at day 7 of culture. These results suggest that GM1low and GM1high monocytes in peripheral blood, represent either different stages of maturation or different subsets with specialized activities. The expression of CD16 on GM1high favours the first possibility and, on the other hand that up-regulation of GM1 expression and probably lipid rafts function is involved in the monocyte to macrophage differentiation process. [source] Regulation of T-cell receptor signalling by membrane microdomainsIMMUNOLOGY, Issue 4 2004Tahir M. Razzaq Summary There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. [source] CD20-mediated apoptosis: signalling through lipid raftsIMMUNOLOGY, Issue 2 2002Julie P. Deans Summary CD20 is an effective target for therapeutic B-cell depletion with monoclonal antibodies. One proposed mechanism of action is direct cytotoxicity mediated via tyrosine kinase-dependent signalling pathways activated upon CD20 cross-linking. The association of CD20 with membrane microdomains known as lipid rafts, enriched in src-family tyrosine kinases and other signalling effectors, suggests an indirect mechanism of anti-CD20-induced apoptosis in which activation of src-family kinases occurs as a consequence of lipid raft clustering. [source] TRAF interactions with raft-like buoyant complexes, better than TRAF rates of degradation, differentiate signaling by CD40 and EBV latent membrane protein 1INTERNATIONAL JOURNAL OF CANCER, Issue 2 2005Hector Ardila-Osorio Abstract The CD40 receptor and the Epstein-Barr virus oncoprotein LMP1 are both members of the TNF-receptor family and share several signaling mediators, including TRAF2 and TRAF3. Depending on the cell lineage and stage of maturation, LMP1 and CD40 can have synergistic, antagonist or unrelated effects. Previous publications have suggested that both TRAF2 and TRAF3 move into lipid rafts upon LMP1 expression or CD40 activation, whereas their proteolysis is only enhanced by CD40. However CD40-induced proteolysis of TRAF2 has only been reported in murine cells, and there are conflicting data regarding translocation of TRAF2 into lipid rafts. We therefore investigated TRAF2 and TRAF3 modifications induced by CD40 and LMP1 signaling in a panel of human cell lines of lymphoid and epithelial origins. Upon CD40 stimulation, a marked redistribution of TRAF2 into the buoyant raft fraction was observed in all cell lines and was often associated with a similar redistribution of TRAF3. In contrast, only TRAF3 was redistributed into the raft fraction upon LMP1 expression. Moreover parallel changes in subcellular distribution of TRAF2 and TRAF3 were recorded by electron microscopy. A significant decrease in TRAF2 and TRAF3 concentrations triggered by CD40 ligation was observed in only 1 cell line and there was no evidence that this decrease was required for the negative feed-back on JNK activation. TRAF2 redistribution into raft-like complexes thus appears as the most significant event distinctive of CD40 and LMP1 signaling. On the other hand, the parallel influence of CD40 and LMP1 on TRAF3 redistribution is consistent with functional similarities between the CD40-TRAF3 and LMP1-TRAF3 axes. [source] DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomasJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6a 2010Anita C. Bellail Abstract To explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane-anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance. Upon TRAIL binding, DR5 was homotrimerized and recruited Fas-associated death domain (FADD) and caspase-8 for the assembly of death-inducing signalling complex (DISC) in the lipid rafts of the plasma membrane. In the DISC, caspase-8 was cleaved and initiated apoptosis by cleaving downstream caspases in TRAIL-sensitive glioblastoma cells. In TRAIL-resistant cells, however, DR5-mediated DISC was modified by receptor-interacting protein (RIP), cellular FADD-like interleukin-1,-converting enzyme inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes or in astrocyte-15 (PED/PEA-15). This DISC modification occurred in the non-raft fractions of the plasma membrane and resulted in the inhibition of caspase-8 cleavage and activation of nuclear factor-,B (NF-,B). Treatment of resistant cells with parthenolide, an inhibitor of inhibitor of ,B (I-,B), eliminated TRAIL-induced NF-,B activity but not TRAIL resistance. In contrast, however, targeting of RIP, c-FLIP or PED/PEA-15 with small interfering RNA (siRNA) led to the redistribution of the DISC from non-rafts to lipid rafts and eliminated the inhibition of caspase-8 cleavage and thereby TRAIL resistance. Taken together, this study indicates that the DISC modification by RIP, c-FLIP and PED/PEA-15 is the most upstream event in TRAIL resistance in glioblastomas. [source] Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injuryJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009Fan Yi Abstract The present study tested the hypothesis that homocysteine (Hcys)-induced ceramide production stimulates lipid rafts (LRs) clustering on the membrane of glomerular endothelial cells (GECs) to form redox signalling platforms by aggregation and activation of NADPH oxidase subunits and thereby enhances superoxide (O2.,) production, leading to glomerular endothelial dysfunction and ultimate injury or sclerosis. Using confocal microscopy, we first demonstrated a co-localization of LR clusters with NADPH oxidase subunits, gp91phox and p47phox in the GECs membrane upon Hcys stimulation. Immunoblot analysis of floated detergent-resistant membrane fractions found that in LR fractions NADPH oxidase subunits gp91phox and p47phox are enriched and that the activity of this enzyme dramatically increased. We also examined the effect of elevated Hcys on the cell monolayer permeability in GECs. It was found that Hcys significantly increased GEC permeability, which was blocked by inhibition of LR redox signalling platform formation. Finally, we found that Hcys-induced enhancement of GEC permeability is associated with the regulation of microtubule stability through these LR-redox platforms. It is concluded that the early injurious effect of Hcys on the glomerular endothelium is associated with the formation of redox signalling platforms via LR clustering, which may lead to increases in glomerular permeability by disruption of microtubule network in GECs. [source] Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell culturesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010Bénédicte Langelier Abstract Rat neural stem cells/neural progenitors (NSC/NP) are generally grown in serum-free medium. In this study, NSC/NP were supplemented with the main long-chain polyunsaturated fatty acids (PUFAs) present in the brain, arachidonic acid (AA), or docosahexaenoic acid (DHA), and were monitored for their growth. Lipid and fatty acid contents of the cells were also determined. Under standard conditions, the cells were characterized by phospholipids displaying a highly saturated profile, and very low levels of PUFAs. When cultured in the presence of PUFAs, the cells easily incorporated them into the phospholipid fraction. We also compared the presence of three membrane proteins in the lipid raft fractions: GFR and connexin 43 contents in the rafts were increased by DHA supplementation, whereas G, subunit content was not significantly modified. The restoration of DHA levels in the phospholipids could profoundly affect protein localization and, consequently, their functionalities. J. Cell. Biochem. 110: 1356,1364, 2010. © 2010 Wiley-Liss, Inc. [source] Multiple Kv1.5 targeting to membrane surface microdomains,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2008Ramón Martínez-Mármol Surface expression of voltage-dependent K+ channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3DGV -mutant confined Kv1.5 to Cav3DGV -vesicles of HEK cells. Contrarily, coexpression of Kv,2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts. J. Cell. Physiol. 217: 667,673, 2008. © 2008 Wiley-Liss, Inc. [source] Signal transduction and functional changes in neutrophils with agingAGING CELL, Issue 4 2004Tamas Fulop Summary It is well known that the immune response decreases during aging, leading to a higher susceptibility to infections, cancers and autoimmune disorders. Most widely studied have been alterations in the adaptive immune response. Recently, the role of the innate immune response as a first-line defence against bacterial invasion and as a modulator of the adaptive immune response has become more widely recognized. One of the most important cell components of the innate response is neutrophils and it is therefore important to elucidate their function during aging. With aging there is an alteration of the receptor-driven functions of human neutrophils, such as superoxide anion production, chemotaxis and apoptosis. One of the alterations underlying these functional changes is a decrease in signalling elicited by specific receptors. Alterations were also found in the neutrophil membrane lipid rafts. These alterations in neutrophil functions and signal transduction that occur during aging might contribute to the significant increase in infections in old age. [source] The different forms of PNS myelin P0 protein within and outside lipid raftsJOURNAL OF NEUROCHEMISTRY, Issue 1 2008Anna Fasano Abstract It is now well established that plasma membranes, such as the myelin sheath, are made of different microdomains with different lipid and protein composition. Lipid rafts are made mainly of sphingolipids and cholesterol, whereas the non-raft regions are made mainly of phosphoglycerides. Most myelin proteins may distribute themselves in raft and non-raft microdomains but the driving force that gives rise to their different distribution is not known yet. In this paper, we have studied the distribution of protein zero (P0), the most representative protein of PNS myelin, in the membrane microdomains. To this end, we have purified P0 from both non-raft (soluble P0, P0-S) and raft (P0-R) regions of PNS. Purified proteins were analyzed by two-dimensional gel electrophoresis and identified and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A detailed structural description of the two P0 forms is given in terms of amino acid sequence, post-translational modifications, and composition of associated lipids. Our findings suggest that structural differences between the two proteins, mainly related to the glycogroups, might be responsible for their different localization. [source] Partitioning of the plasma membrane Ca2+ -ATPase into lipid rafts in primary neurons: effects of cholesterol depletionJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Lei Jiang Abstract Spatial and temporal alterations in intracellular calcium [Ca2+]i play a pivotal role in a wide array of neuronal functions. Disruption in Ca2+ homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca2+ -ATPase (PMCA) is a high affinity Ca2+ transporter that plays a crucial role in the termination of [Ca2+]i signals and in the maintenance of low [Ca2+]i essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or ,lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca2+ signaling in the central nervous system. [source] Differential stimulation-induced receptor localization in lipid rafts for interleukin-6 family cytokines signaling through the gp130/leukemia inhibitory factor receptor complexJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Martha D. Port Abstract Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) are cytokines which signal through receptor complexes that include the receptor subunits glycoprotein 130 (gp130) and the LIF receptor (LIFR), but CNTF also requires the non-signal transducing CNTF receptor (CNTFR) for binding. We show here that in IMR-32 neuronal cells endogenously expressing the receptor subunits for LIF and CNTF, CNTFR, but not gp130 or LIFR, is found in detergent-resistant lipid rafts. In addition, stimulation of these cells with CNTF resulted in a rapid translocation of a portion of gp130 and LIFR into detergent-resistant lipid rafts while an equivalent stimulation with LIF did not. Disruption of lipid rafts by cholesterol depletion of cell membranes blocked the CNTF-induced translocation of LIFR and gp130. Interestingly, while cholesterol-depletion did not inhibit signal transducer and activator of transcription 3 phosphorylation by either CNTF or LIF stimulation, it strongly inhibited both CNTF- and LIF-mediated phosphorylation of extracellular signal-regulated kinases 1 and 2 and Akt. LIF and CNTF generally appear to have redundant effects in cells responsive to both cytokines. Intriguingly, the data presented here suggest a possible mechanism whereby CNTF or other cytokines that signal through CNTFR could generate signals distinct from those elicited by cytokines such as LIF which utilize a LIFR/gp130 heterodimer, via association with or exclusion from lipid rafts. [source] Increased phosphorylation and redistribution of NMDA receptors between synaptic lipid rafts and post-synaptic densities following transient global ischemia in the rat brainJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Shintaro Besshoh Abstract Ischemia results in increased phosphorylation of NMDA receptors. To investigate the possible role of lipid rafts in this increase, lipid rafts and post-synaptic densities (PSDs) were isolated by the extraction of rat brain synaptosomes with Triton X-100 followed by sucrose density gradient centrifugation. Lipid rafts accounted for the majority of PSD-95, whereas SAP102 was predominantly located in PSDs. Between 50 and 60% of NMDA receptors were associated with lipid rafts. Greater than 85,90% of Src and Fyn were present in lipid rafts, whereas Pyk2 was mainly associated with PSDs. Lipid rafts and PSDs were isolated from animals subjected to 15 min of global ischemia followed by 6 h of recovery. Ischemia did not affect the yield, density, flotillin-1 or cholesterol content of lipid rafts. Following ischemia, the phosphorylation of NR1 by protein kinase C and tyrosine phosphorylation of NR2A and NR2B was increased in both lipid rafts and PSDs, with a greater increase in tyrosine phosphorylation occurring in the raft fraction. Following ischemia, NR1, NR2A and NR2B levels were elevated in PSDs and reduced in lipid rafts. The findings are consistent with a model involving close interaction between lipid rafts and PSDs and a role for lipid rafts in ischemia-induced signaling pathways. [source] Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptorJOURNAL OF NEUROCHEMISTRY, Issue 3 2003V. Pignot Abstract Nogo-66 receptor (NgR) has recently been identified as the neuronal receptor of the myelin-associated proteins Nogo-A, oligodendrocyte protein (OMgp) and myelin-associated glycoprotein (MAG), and mediates inhibition of axonal regeneration both in vitro and in vivo. Through database searches, we have identified two novel proteins (NgRH1 and NgRH2) that turned out to be homologous in their primary structures, biochemical properties and expression patterns to NgR. Like NgR, the homologues contain eight leucine-rich repeats (LRR) flanked by a leucine-rich repeat C-terminus (LRRCT) and a leucine-rich repeat N-terminus (LRRNT), and also have a C-terminal GPI signal sequence. Northern blot analysis showed predominant expression of NgRH1 and NgRH2 mRNA in the brain. In situ hybridization and immunohistochemistry on rat brain slices revealed neuronal expression of the genes. NgRH1 and NgRH2 were detected on the cell surface of recombinant cell lines as N-glycosylated GPI anchored proteins and, consistent with other GPI anchored proteins, were localized within the lipid rafts of cellular membranes. In addition, an N-terminal proteolytic fragment of NgR comprising the majority of the ectodomain was found to be constitutively secreted from cells. Our data indicate that NgR, NgRH1 and NgRH2 constitute a novel receptor protein family, which may play related roles within the CNS. [source] Oxytocin and Oxytocin Receptors in Cancer Cells and ProliferationJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2004P. Cassoni Abstract The hypothalamic nonapeptide oxytocin plays a crucial role in many reproductive and behavioural functions. However, in recent years, an additional new role for oxytocin has been identified in neoplastic pathology. In tumours, oxytocin acts as a growth regulator, through the activation of a specific G-coupled transmembrane receptor, the oxytocin receptor. In vitro, oxytocin inhibits proliferation of neoplastic cells of either epithelial (mammary and endometrial), nervous or bone origin, all expressing oxytocin receptor. Furthermore, an oxytocin growth-inhibiting effect was also tested and confirmed in vivo in mouse and rat mammary carcinomas. In neoplastic cells derived from two additional oxytocin target tissues, trophoblast and endothelium, oxytocin was found to promote cell proliferation, an effect opposite to that previously described in all other neoplastic oxytocin-responsive cells. The signal transduction pathways coupled to the biological effects of oxytocin are different in oxytocin growth-inhibited or growth-stimulated cells, and may depend on the membrane localization of the oxytocin receptor itself. The inhibitory effect of oxytocin is apparently mediated by activation of the cAMP-protein kinase A pathway, a nonconventional oxytocin signalling pathway, whereas the mitogenic effect is coupled to the increase of intracellular [Ca2+] and tyrosine phosphorylation, ,classical' oxytocin transducers. Moreover, the oxytocin receptor localization in lipid rafts enriched in caveolin-1 turns the inhibition of cell growth into a proliferative response, eliciting different epidermal growth factor receptor/mitogen-activated protein kinase activation patterns. This unexpected role of oxytocin (and oxytocin analogues) in regulating cell proliferation, as well as the widespread expression of oxytocin receptors in neoplastic tissues of different origin, opens up new perspectives on the biological role of the oxytocin,oxytocin receptor system in cancer. [source] Endothelin-1 modulates anterograde fast axonal transport in the central nervous systemJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2005Martha E. Stokely Abstract Anterograde fast axonal transport (FAxT) maintains synaptic function and provides materials necessary for neuronal survival. Localized changes in FAxT are associated with a variety of central nervous system (CNS) neuropathies, where they may contribute to inappropriate remodeling, a process more appropriately involved in synaptic plasticity and development. In some cases, developmental remodeling is regulated by localized secretion of endothelins (ETs), neuroinflammatory peptides that are also pathologically elevated in cases of neurologic disease, CNS injury, or ischemia. To investigate the potential role of ETs in these processes, we decided to test whether locally elevated endothelin-1 (ET-1) modulates FAxT in adult CNS tissues. We used the established in vivo rat optic nerve model and a novel ex vivo rat hippocampal slice model to test this hypothesis. In vivo, exogenously elevated vitreal ET-1 significantly affected protein composition of FAxT-cargos as well as the abundance and peak delivery times for metabolically-labeled proteins that were transported into the optic nerve. Proteins with molecular weights of 139, 118, 89, 80, 64, 59, 51, 45, 42, 37, and 25 kDa were evaluated at injection-sacrifice intervals (ISIs) of 24, 28, 32, and 36 hr. In acute hippocampal slices maintained on nonvascular supplies of glucose and oxygen, ET-1 significantly decreased the distance traveled along the Schaffer collateral tract by nonmetabolically-labeled lipid rafts at 5 and 10 min after pulse-labeling. In both models, ET-1 significantly affected transport or targeted delivery of FaxT-cargos, suggesting that ET-1 has the potential to modulate FAxT in adult CNS tissues. © 2005 Wiley-Liss, Inc. [source] |