Lipid Layer (lipid + layer)

Distribution by Scientific Domains


Selected Abstracts


Non-invasive Transdermal Delivery Route Using Electrostatically Interactive Biocompatible Nanocapsules

ADVANCED MATERIALS, Issue 6 2010
Jinseob Shin
A robust means of fabricating skin-penetrating and compatible nanocarriers comprising poly(D, L -lactide- co -glycolide) is reported. The resultant nanocapsules have the ability to load biologically active ingredients and selectively release them through the epidermis lipid layer. Their release of genistein (left figure) is determined to be diffusion-controlled, and they are shown to successfully deliver molecules, such as nile red (right figure), into biopsied skin samples. [source]


Tear-film lipid layer morphology and corneal sensation in the development of blinking in neonates and infants

JOURNAL OF ANATOMY, Issue 3 2005
John G. Lawrenson
Abstract The aim of the study was to evaluate the role of lipid layer thickness and corneal sensation in the development of blinking in neonates. The study group comprised sixty-four neonates and infants (mean age 27.5 ± 15 (sd) weeks, range 3.4,52) whose mothers were attending a general practice healthy baby clinic. Spontaneous eye-blink activity was determined from digital videographic recordings; tear film lipid layer morphology wasexamined using interference patterns produced by the Keeler TearscopeÔ Plus over a five-point grading scale (higher grades are associated with thick and stable lipid films); corneal sensation threshold was assessed with the Non-Contact Corneal Aesthesiometer (NCCA), using the eye-blink response as an objective indication that the cooling stimulus had been felt; palpebral aperture dimensions were measured using calibrated digital still images of the eye in the primary position. The overall mean spontaneous blink-rate was found to be 3.6 (± 0.3) blinks min,1, and the mean interblink time was 21.6 (± 2.8) s. The lowest blink-rates were observed in the 0,17-week age group (average 2 blinks min,1). The blink-rate showed a highly significant correlation with age (r = 0.46, P < 0.01). The overall mean lipid layer grading was 3.6 (± 0.2 SE) arbitrary units. Higher grades were found in the newborn and the mean grading score reduced with age (P < 0.01). The mean sensation threshold to blink (TTB) was 0.69 (0.04 SE) mbar, which did not differ from a control group of older subjects (P > 0.05). There was a rapid increase in palpebral aperture length and width from birth to 1 year old, with surface area increasing by 50% over the same period. We concluded that the low rate of spontaneous eye blink activity in neonates is associated with a thick stable lipid layer that may be a function of a small palpebral aperture. Furthermore, neonates appear to have the capacity to detect ocular surface cooling, which is a major trigger for spontaneous blinking. [source]


Phospholipid composition of articular cartilage boundary lubricant

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2001
A. V. Sarma
The mechanism of lubrication in normal human joints depends on loading and velocity conditions. Boundary lubrication, a mechanism in which layers of molecules separate opposing surfaces, occurs under severe loading. This study was aimed at characterizing the phospholipid composition of the adsorbed molecular layer on the surface of normal cartilage that performs as a boundary lubricant. The different types of phospholipid adsorbed onto the surface of cartilage were isolated by extraction and identified by chromatography on silica gel paper and mass spectroscopy. The main phospholipid classes identified were quantified by a phosphate assay. Gas chromatography and electrospray ionization mass spectrometry were used to further characterize the fatty acyl chains in each major phospholipid component and to identify the molecular species present. Phosphatidylcholine (41%), phosphatidylethanolamine (27%) and sphingomyelin (32%) were the major components of the lipid layer on the normal cartilage surface. For each lipid type, a mixture of fatty acids was detected, with a higher percentage of unsaturated species compared to saturated species. The most abundant fatty acid observed with all three lipid types was oleic acid (C18:1). Additional work to further quantify the molecular species using electrospray ionization mass spectrometry is recommended. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Formulation, preparation and evaluation of flunarizine-loaded lipid microspheres

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2007
Yan Jiao Wang
The aim of this study was to investigate the feasibility of preparing flunarizine-loaded lipid microspheres. Lipid microspheres (LMs) are excellent drug carriers for drug delivery systems (DDS) and are relatively stable and easily mass-produced. They have no particular adverse effects. LMs have been widely studied as drug carriers for water-soluble drugs, lipid-soluble drugs and inadequately soluble (in water or in lipid) drugs, in that they have a lipid layer, a water layer and an emulsifier layer. Flunarizine (FZ), a poorly water-soluble drug, was incorporated in lipid microspheres to reduce side effects by avoiding the use of supplementary agents, compared with solution injection. After investigation, the final formulation was as follows: 10% oil phase (long-chain triglyceride (LCT); medium-chain fatty acid (MCT) = 50:50); 1.2% egg lecithin; 0.2% Tween-80; 2.5% glycerin; 0.3% dl-,-tocopherol; 0.02% EDTA; 0.03% sodium oleate; 0.1% FZ and double-distilled water to give a total volume of 100 mL. Homogenization was the main method of preparation and the best conditions were a temperature of 40°C, a pressure of 700,800 bar and a suitable cycle frequency of about 10. The particle size distribution, zeta-potential and entrapment efficacy were found to be 198.7 ± 54.0 nm, ,26.4mV and 96.2%, respectively. Its concentration in the preparation was 1.0mg mL,1. The lipid microspheres were stable during storage at 4°C, 25°C and 37°C for 3 months. Pharmacokinetic studies were performed in rats using a dose of 1.0 mg kg,1. The pharmacokinetic parameters were as follows: AUC0-t 6.13 ,g h mL,1, t½ 5.32 h and Ke 0.16 Lh,1. The preparation data fitted a two-compartment model estimated by using 3p87 analysis software. From the observed data, FZ encapsulated in LMs did not significantly alter the pharmacokinetic characteristic compared with the FZ solution injection and did not produce a delayed release effect, when it was released in-vivo in rats. However, the availability of the drug was increased. These results suggested that this LM system is a promising option for the preparation of the liquid form of FZ for intravenous administration. [source]


Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy

BIOTECHNOLOGY PROGRESS, Issue 4 2009
Kanaka Hettiarachchi
Abstract We report the production of micrometer-sized gas-filled lipospheres using digital (droplet-based) microfluidics technology for chemotherapeutic drug delivery. Advantages of on-chip synthesis include a monodisperse size distribution (polydispersity index (,) values of <5%) with consistent stability and uniform drug loading. Photolithography techniques are applied to fabricate novel PDMS-based microfluidic devices that feature a combined dual hydrodynamic flow-focusing region and expanding nozzle geometry with a narrow orifice. Spherical vehicles are formed through flow-focusing by the self-assembly of phospholipids to a lipid layer around the gas core, followed by a shear-induced break off at the orifice. The encapsulation of an extra oil layer between the outer lipid shell and inner bubble gaseous core allows the transport of highly hydrophobic and toxic drugs at high concentrations. Doxorubicin (Dox) entrapment is estimated at 15 mg mL,1 of particles packed in a single ordered layer. In addition, the attachment of targeting ligands to the lipid shell allows for direct vehicle binding to cancer cells. Preliminary acoustic studies of these monodisperse gas lipospheres reveal a highly uniform echo correlation of greater than 95%. The potential exists for localized drug concentration and release with ultrasound energy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Basis of occlusive therapy in psoriasis: correcting defects in permeability barrier and calcium gradient

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 3 2001
Sang Min Hwang MD
Background Although occlusive dressings have great potential in the management of psoriasis vulgaris, the therapeutic mechanism is not completely understood. Occlusion artificially restores and corrects the defective barrier in psoriasis plaques. Additionally, occlusion is know to normalize the epidermal calcium gradients in hyperproliferative murine skin models. Methods To investigate the basis of the therapeutic effect of occlusion on psoriatic plaques, we investigated the ultrastructural morphology of intercorneocyte lipid layers, lamellar bodies, and calcium gradient in chronic plaque-type psoriasis after occlusion with a water vapor-impermeable membrane. The specimens were processed for electron microscopy using: (i) ruthenium tetroxide postfixation; and (ii) ion-capture cytochemistry for calcium localization. Results Occlusion for 7 days resulted in a nearly mature pattern of intercellular multilamellar structures, re-establishment of the near-normal epidermal calcium gradient, and disappearance of calcium precipitates from the stratum corneum interstices. Conclusions The normalization of the permeability barrier and epidermal calcium gradient may play important roles in the therapeutic effects of occlusive dressings in chronic plaque-type psoriasis. [source]


IgG binding kinetics to oligo B protein A domains on lipid layers immobilized on a 27,MHz quartz-crystal microbalance

JOURNAL OF MOLECULAR RECOGNITION, Issue 2 2007
Hideyuki Mitomo
Abstract Although molecular recognitions between membrane receptors and their soluble ligands have been analyzed using their soluble proteins in bulk solutions, molecular recognitions of membrane receptors should be studied on lipid membranes considering their orientation and dynamics on membrane surfaces. We employed Staphylococcal Protein A (SpA) oligo B domains with long trialkyl-tags from E. coli (LppBx, x,=,1, 2, and 5) and immobilized LppBx on lipid layers using hydrophobic interactions from the trialkyl-tag, while maintaining the orientation of B domain-chains on a 27,MHz quartz-crystal microbalance (QCM; AT-cut shear mode). The binding of IgG Fc regions to LppBx on lipid layers was detected by frequency decreases (mass increases) on the QCM. The maximum amount bound (,mmax), association constants (Ka), association and dissociation rate constants (k1 and k,1, respectively) were obtained. Binding kinetics of IgG to LppB2 and LppB5 were quite similar, showing a simple 1:1 binding of the IgG Fc region to the B domain, when the surface coverage of LppB2 and LppB5 on the lipid surface is low (1.4%). When LppB5 was immobilized at the high surface coverage of 3.5%, the complex bindings of IgG such as one IgG bound to one or two LppB5 on the membrane could be observed. IgG-LppB1 binding was largely restricted because of steric hindrance on lipid surfaces. This gives a suggestion why Protein A has five IgG binding domains. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Advances in membrane receptor screening and analysis

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2004
Matthew A. Cooper
Abstract During the last decade there has been significant progress in the development of analytical techniques for the screening of ligand binding to membranes and membrane receptors. This review focuses on developments using label-free assays that facilitate ligand,membrane,receptor screening without the need for chemical-, biological- or radiological-labelled reagents. These assays include acoustic, optical surface plasmon resonance biosensing, sedimentation (analytical ultracentrifugation), chromatographic assays, isothermal titration calorimetry and differential scanning calorimetry. The merits and applications of cell-based screening systems and of different model membrane systems, including planar supported lipid layers, bead-supported membranes and lipid micro-arrays, are discussed. Recent advances involving more established techniques including intrinsic fluorescence, FRET spectroscopy, scintillation proximity assays and automated patch clamping are presented along with applications to peripheral membrane proteins, ion channels and G protein-coupled receptors. Novel high-throughput assays for determination of drug- and protein-partitioning in membranes are also highlighted. To aid the experimenter, a brief synopsis of the techniques commonly employed to purify and reconstitute membranes and membrane receptors is included. Copyright © 2004 John Wiley & Sons, Ltd [source]


Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins

BIOTECHNOLOGY JOURNAL, Issue 11 2009
Jennifer A. Maynard Dr.
Abstract Technologies based on surface plasmon resonance (SPR) have allowed rapid, label-free characterization of protein-protein and protein-small molecule interactions. SPR has become the gold standard in industrial and academic settings, in which the interaction between a pair of soluble binding partners is characterized in detail or a library of molecules is screened for binding against a single soluble protein. In spite of these successes, SPR is only beginning to be adapted to the needs of membrane-bound proteins which are difficult to study in situ but represent promising targets for drug and biomarker development. Existing technologies, such as BIAcoreTM, have been adapted for membrane protein analysis by building supported lipid layers or capturing lipid vesicles on existing chips. Newer technologies, still in development, will allow membrane proteins to be presented in native or near-native formats. These include SPR nanopore arrays, in which lipid bilayers containing membrane proteins stably span small pores that are addressable from both sides of the bilayer. Here, we discuss current SPR instrumentation and the potential for SPR nanopore arrays to enable quantitative, high-throughput screening of G protein coupled receptor ligands and applications in basic cellular biology. [source]