Limb Leads (limb + lead)

Distribution by Scientific Domains


Selected Abstracts


The Morphology Changes in Limb Leads after Ablation of Verapamil-Sensitive Idiopathic Left Ventricular Tachycardia and Their Correlation with Recurrence

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2008
SHU-YUAN YAO Ph.D
Objectives: This study was designed to explore the morphology changes in limb leads of ECGs after successful ablation of verapamil sensitive idiopathic left ventricular tachycardia (ILVT) and their correlation with tachycardia recurrence. Methods: Between January 2001 and December 2006, 116 patients who underwent successful ablation of ILVT were included in the study. Twelve-lead surface ECG recordings during sinus rhythm were obtained in all patients before and after ablation to compare morphology changes in limb leads. Results: The ECG morphology changes after ablation were divided into two categories: one with new or deepening Q wave in inferior leads and/or disappearance of Q wave in leads I and aVL, and the other without change. The changes in any Lead II, III, or aVF after ablation occurred significantly more in patients without recurrence of ventricular tachycardia (VT) (P < 0.0001, 0.002, and 0.0001, respectively). The patients with recurrence of VT tended to have no ECG changes, compared with those without recurrence of VT (P = 0.009). The sensitivity of leads II, III, and aVF changes in predicting nonrecurrence VT were 66.7%, 78.7%, and 79.6%, specificity were 100%, 75%, and 87.5%, and nonrecurrence predictive value of 100%, 97.7%, and 98.9%, respectively. When inferior leads changes were combined, they could predict all nonrecurrence patients with 100% specificity. Conclusions: Successful radiofrequency ablation of ILVT could result in morphology changes in limb leads of ECG, especially in inferior leads. The combined changes in inferior leads can be used as an effective endpoint in ablation of this ILVT. [source]


Electrocardiogram Differentiation of Benign Early Repolarization Versus Acute Myocardial Infarction by Emergency Physicians and Cardiologists

ACADEMIC EMERGENCY MEDICINE, Issue 9 2006
Samuel D. Turnipseed MD
Abstract Objectives: ST-segment elevation (STE) related to benign early repolarization (BER), a common normal variant, can be difficult to distinguish from acute myocardial infarction (AMI). The authors compared the electrocardiogram (ECG) interpretations of these two entities by emergency physicians (EPs) and cardiologists. Methods: Twenty-five cases (13 BER, 12 AMI) of patients presenting to the emergency department with chest pain were identified. Criteria for BER required four of the following: 1) widespread STE (precordial greater than limb leads), 2) J-point elevation, 3) concavity of initial up-sloping portion of ST segment, 4) notching or irregular contour of J point, and 5) prominent, concordant T waves. Additional BER criteria were 1) stable ECG pattern, 2) negative cardiac injury markers, and 3) normal cardiac stress test or angiography. AMI criteria were 1) regional STE, 2) positive cardiac injury markers, and 3) identification of culprit coronary artery by angiography in less than eight hours of presentation. The 25 ECGs were distributed to 12 EPs and 12 cardiologists (four in academic medicine, four in community practice, and four in community academics [health maintenance organization] in each physician group). The physicians were informed of the patients' age, gender, and race, and they then interpreted the ECGs as BER or AMI. Undercalls (AMI misdiagnosed as BER) and overcalls (BER misdiagnosed as AMI) were calculated for each physician group. Results: Cardiologists correctly interpreted 90% of ECGs, and EPs correctly interpreted 81% of ECGs. The proportion of undercalls (missed AMI/total AMI) was 2.8% for cardiologists (95% confidence interval [CI] = 0.09% to 5.5%) compared with 9.7% for EPs (95% CI = 4.8% to 14.6%) (p = 0.02). The proportion of overcalls (missed BER/total BER) was 17.3% for cardiologists (95% CI = 11.4% to 23.3%) versus 27.6% for EPs (95% CI = 20.6% to 34.6%) (p = 0.03). The mean number of years in practice was 19.8 for cardiologists (95% CI = 19 to 20.5) and 11 years for EPs (95% CI = 10.5 to 12.0) (p < 0.001). Conclusions: Although correct interpretation was high in both groups, cardiologists, who had significantly more years of practice, had fewer misinterpretations than EPs in distinguishing BER from AMI electrocardiographically. [source]


The Morphology Changes in Limb Leads after Ablation of Verapamil-Sensitive Idiopathic Left Ventricular Tachycardia and Their Correlation with Recurrence

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2008
SHU-YUAN YAO Ph.D
Objectives: This study was designed to explore the morphology changes in limb leads of ECGs after successful ablation of verapamil sensitive idiopathic left ventricular tachycardia (ILVT) and their correlation with tachycardia recurrence. Methods: Between January 2001 and December 2006, 116 patients who underwent successful ablation of ILVT were included in the study. Twelve-lead surface ECG recordings during sinus rhythm were obtained in all patients before and after ablation to compare morphology changes in limb leads. Results: The ECG morphology changes after ablation were divided into two categories: one with new or deepening Q wave in inferior leads and/or disappearance of Q wave in leads I and aVL, and the other without change. The changes in any Lead II, III, or aVF after ablation occurred significantly more in patients without recurrence of ventricular tachycardia (VT) (P < 0.0001, 0.002, and 0.0001, respectively). The patients with recurrence of VT tended to have no ECG changes, compared with those without recurrence of VT (P = 0.009). The sensitivity of leads II, III, and aVF changes in predicting nonrecurrence VT were 66.7%, 78.7%, and 79.6%, specificity were 100%, 75%, and 87.5%, and nonrecurrence predictive value of 100%, 97.7%, and 98.9%, respectively. When inferior leads changes were combined, they could predict all nonrecurrence patients with 100% specificity. Conclusions: Successful radiofrequency ablation of ILVT could result in morphology changes in limb leads of ECG, especially in inferior leads. The combined changes in inferior leads can be used as an effective endpoint in ablation of this ILVT. [source]


ECG Leads I and II to Evaluate Diuresis of Patients with Congestive Heart Failure Admitted to the Hospital via the Emergency Department

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1 2009
SUTHAPORN LUMLERTGUL M.D.
Background: Attenuation of electrocardiogram (ECG) QRS complexes is observed in patients with a variety of illnesses and peripheral edema (PERED), and augmentation with alleviation of PERED. Serial ECGs in stable individuals display variation in the amplitude of QRS complexes in leads V1,V6, stemming from careless placement of recording electrodes on the chestwall. Electrocardiographs record only leads I and II, and mathematically derive the other four limb leads in real time. This study evaluated the sum of the amplitudes of ECG leads I and II, along with other sets of ECG leads in the monitoring of diuresis in patients with congestive heart failure (CHF). Methods: Twenty patients with CHF had ECGs and weights recorded on admission and at discharge. The amplitude of the QRS complexes in all ECG leads were measured and sums of I and II, all limb leads, V1,V6, and all 12 leads were calculated. Results: There was a good correlation between the weight loss and the increase in the sums of the amplitudes of the QRS complexes from leads I and II (r = 0.55, P = 0.012), and the six limb leads (r = 0.68, P = 0.001), but a poor correlation with the V1,V6 leads (r = 0.04, P = 0.85) and all 12 leads (r = 0.1, P = 0.40). Conclusions: Sums of the amplitudes of the ECG QRS complexes from leads I and II constitute a reliable, easily obtainable, ubiquitously available, bedside clinical index, which can be employed in the diagnosis, monitoring of management, and follow-up of patients with CHF. [source]


Dispersion of QT Intervals: A Measure of Dispersion of Repolarization or Simply a Projection Effect?

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 9 2000
DIEGO DI BERNARDO
QT interval dispersion may provide little information about repolarization dispersion. Some clinical measurements demonstrate an association between high QT interval dispersion and high morbidity and mortality, but what is being measured is not clear. This study was designed to help resolve this dilemma. We compared the association between different clinical measures of QT interval dispersion and the ECG lead amplitudes derived from a heart vector model of repolarization with no repolarization dispersion whatsoever. We compared our clinical QT interval dispersion data obtained from 25 subjects without cardiac disease with similar data from published studies, and correlated these QT dispersion results with the distribution of lead amplitudes derived from the projection of the heart vector onto the body surface during repolarization. Published results were available for mean relative QT intervals and mean differences from the maximum QT interval. The leads were derived from Uijen and Dower lead vector data. Using the Uijen lead vector data, the correlation between measurements of dispersion and derived lead amplitudes ranged from 0.78 to 0.99 for limb leads, and using the Dower values ranged from 0.81 to 0.94 for the precordial leads. These results show a clear association between the measured QT interval dispersion and the variation in ECG lead amplitudes derived from a simple heart vector model of repolarization with no regional information. Therefore, measured QT dispersion is related mostly to a projection effect and is not a true measure of repolarization dispersion. Our existing interpretation of QT dispersion must be reexamined, and other measurements that provide true repolarization dispersion data investigated. [source]