Lignin Phenols (lignin + phenol)

Distribution by Scientific Domains


Selected Abstracts


Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensities

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2010
A. Schmitt
Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re-wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air-drying, undisturbed soil columns were re-wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non-dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20- and 50-mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re-wetting in this soil. However, gram-positive bacteria and actinomycetes were reduced whereas gram-negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1,7c + 18:1,7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re-wetting intensity. Drying and re-wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re-wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons. [source]


Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost

GLOBAL CHANGE BIOLOGY, Issue 9 2004
Masayuki Kawahigashi
Abstract The Yenisei river passes every type of permafrost regime, from south to north, being characterized by increasing continuity of the permafrost and by decreasing thickness of the active layer. We used that situation to test the hypothesis that amounts and properties of dissolved organic matter (DOM) in small streams draining forested catchments respond to different permafrost regimes. Water samples were taken from eight tributaries along the Yenisei between 67°30,N and 65°49,N latitude. The samples were analysed for dissolved organic carbon (DOC) and nitrogen (DON) and DOM was characterized by its chemical composition (XAD-8 fractionation, sugars, lignin phenols, amino acids, protein, UV and fluorescence spectroscopy), and its biodegradability. Most properties of the tributary waters varied depending on latitude. The higher the latitude, the higher were DOC, DON and the proportion of the hydrophobic fraction of DOC. The contribution of hexoses and pentoses to DOC were higher in southern tributaries; on the other hand, phenolic compounds were more abundant in northern tributaries. Mineralizable DOC ranged between 4% and 28% of total DOC. DOM in northern tributaries was significantly (P<0.05) less biodegradable than that in southern tributaries reflecting the differences in the chemical properties of DOM. Our results suggest that the differences in DOM properties are mainly attributed to differences of permafrost regime, affecting depth of active layer, soil organic matter accumulation and vegetation. Soil organic matter and vegetation determine the amount and composition of DOM produced in the catchments while the depth of the active layer likely controls the quantity and quality of DOM exported to streams. Sorptive interactions of DOM with the soil mineral phase typically increase with depth. The results imply that a northern shift of discontinuous permafrost likely will change in the long term the input of DOM into the Yenisei and thus probably into the Kara Sea. [source]


Compound-specific stable-isotope (,13C) analysis in soil science

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2005
Bruno Glaser
Abstract This review provides current state of the art of compound-specific stable-isotope-ratio mass spectrometry (,13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound-specific stable-isotope analysis are compared. Analogous to the ,13C analysis in bulk samples, by means of elemental analyzer,isotope-ratio mass spectrometry, physical fractions such as particle-size fractions, soil microbial biomass, and water-soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so-called molecular markers) indicating plant- (pentoses, long-chain n-alkanes, lignin phenols) and microbial-derived residues (phospholipid fatty acids, hexoses, amino sugars, and short-chain n-alkanes) as well as other interesting soil constituents such as "black carbon" and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis,gas chromatography,combustion,isotope-ratio mass spectrometry, gas chromatography,combustion,isotope-ratio mass spectrometry, or liquid chromatography,combustion,isotope-ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars , sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3-to-C4 plant conversion) or artificial (positive or negative) 13C labeling is used. Substanzspezifische Stabilisotopenanalyse (,13C) in der Bodenforschung Dieser Artikel fasst den Stand der Forschung bezüglich der substanzspezifischen Stabilisotopenanalyse (,13C) zusammen. Innovative Anwendungen und ein Ausblick für künftige Forschungsaktivitäten werden anhand von Fallbeispielen gegeben. Zunächst wird die ökologische Bedeutung von stabilen C-Isotopen kurz erläutert. Daran schließt sich ein methodischer Teil an, in welchem die verschiedenen Techniken gegenüber gestellt werden. Analog zu ,13C-Messungen der Feinerde mittels Elementaranalysator-Isotopenverhältnis-Massenspektrometrie können physikalisch isolierte Fraktionen (z.,B. Korngrößenfraktionen, mikrobielle Biomasse, DOC) analysiert werden. Der Schwerpunkt dieses Übersichtsartikels liegt jedoch in der Diskussion der C-Isotopensignatur chemischer Fraktionen (sog. Biomarker), welche Rückschlüsse auf Herkunft und Dynamik pflanzlicher (Pentosen, langkettige n-Alkane, Ligninphenole) und mikrobieller Rückstände (Phospholipidfettsäuren, Hexosen, Aminozucker und kurzkettige n-Alkane) sowie anderer interessanter Substanzen im Boden erlaubt wie z.,B. ,Black Carbon" und polyzyklische aromatische Kohlenwasserstoffe. Zu diesem Zweck kommen innovative Techniken zum Einsatz wie z.,B. Pyrolyse-Gaschromatographie-Isotopenverhältnismassenspektrometrie, Gaschromatographie-Verbrennungs-Isotopenverhältnismassenspektrometrie und Flüssigkeitschromatographie-Oxidations-Isotopenverhältnismassenspektrometrie. Innovative ökologische Anwendungen werden erläutert, welche sich prinzipiell in zwei Kategorien einteilen lassen: (1) Quantifizierung der Sequestrierung und des Umsatzes dieser Verbindungen in der Umwelt; (2) Untersuchung der Herkunft spezifischer organischer Substanzen. Umsatzzeiten physikalischer (Sand < Schluff < Ton) und chemischer Fraktionen (Lignin < Phospholipidfettsäuren < Aminozucker , Zucker) sind generall kleiner als jene der gesamten organischen Substanz in der Feinerde und nehmen in der in Klammern angegebenen Reihenfolge zu. Die Untersuchung der Herkunft organischer Substanzen (z.,B. polyzyklischer aromatischer Kohlenwasserstoffe) ist problematisch, weil die Unterschiede der Isotopensignatur verschiedener Quellen gering sind und meist mehr als zwei Quellen zur Isotopensignatur des untersuchten Biomarkers beitragen. Deswegen sollte die Untersuchung der Herkunft organischer Substanzen auf Tracer-Experimente beschränkt werden, wie z.,B. nach natürlicher (C3-C4-Pflanzenwechsel) bzw. künstlicher (13C-An- oder -Abreicherung) Markierung. [source]