Home About us Contact | |||
Ligase Activity (ligase + activity)
Selected AbstractsMice with mutations in Mahogunin ring finger-1 (Mgrn1) exhibit abnormal patterning of the left,right axisDEVELOPMENTAL DYNAMICS, Issue 12 2006Christina D. Cota Abstract Mahogunin Ring Finger 1 (Mgrn1) encodes a RING-containing protein with ubiquitin ligase activity that has been implicated in pigment-type switching. In addition to having dark fur, mice lacking MGRN1 develop adult-onset spongy degeneration of the central nervous system and have reduced embryonic viability. Observation of complete situs inversus in a small proportion of adult Mgrn1 mutant mice suggested that embryonic lethality resulted from congenital heart defects due to defective establishment and/or maintenance of the left,right (LR) axis. Here we report that Mgrn1 is expressed in a pattern consistent with a role in LR patterning during early development and that many Mgrn1 mutant embryos show abnormal expression of asymmetrically expressed genes involved in LR patterning. A range of complex heart defects was observed in 20,25% of mid-to-late gestation Mgrn1 mutant embryos and another 20% were dead. This finding was consistent with 46,60% mortality of mutants by weaning age. Our results indicate that Mgrn1 acts early in the LR signaling cascade and is likely to provide new insight into this developmental process as Nodal expression was uncoupled from expression of other Nodal-responsive genes in Mgrn1 mutant embryos. Our work identifies a novel role for MGRN1 in embryonic patterning and suggests that the ubiquitination of MGRN1 target genes is essential for the proper establishment and/or maintenance of the LR axis. Developmental Dynamics 235:3438,3447, 2006. © 2006 Wiley-Liss, Inc. [source] The ubiquitin ligase ability of IAPs regulates apoptosisIUBMB LIFE, Issue 12 2005Ting Ni Abstract Accumulating evidence indicates that there is a critical role of the ubiquitin/proteasome pathway in the regulation of apoptosis. Among the important molecules that couple these two fundamental cellular activities are members of the inhibitor of apoptosis (IAP) protein family. In addition to their well-studied ability to directly bind and inhibit caspases, many IAPs contain RING domains that are necessary and sufficient to cause ubiquitylation and subsequent proteasome-mediated proteolysis. This review summarizes recent findings about the ubiquitin protein ligase activity of IAPs, and considers possible mechanisms for substrate selectivity. [source] ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligasesTHE PLANT JOURNAL, Issue 5 2008Edward Kraft Summary Appropriate methylation of genomes is essential for gene regulation. Here, we describe the six-member ORTHRUS (ORTH) gene family of Arabidopsis thaliana that plays a role in DNA methylation in vivo. ORTH1, ORTH5 are predicted to encode proteins that contain one plant homeodomain (PHD), two really interesting new gene (RING) domains, and one set ring associated (SRA) domain, whereas ORTHlike-1 encodes a protein with only one RING and SRA domain. cDNAs for ORTH1, ORTH2, ORTH5 and ORTHlike-1 were isolated, and when expressed as glutathione- S -transferase (GST) fusion proteins, were capable of promoting ubiquitylation in vitro with the E2 AtUBC11. ORTH1 promotes ubiquitylation when paired with additional AtUBC8 family members. ORTH1 proteins with substitutions in metal,ligand binding residues in each ORTH1 RING domain individually, and ORTH1 truncation derivatives lacking one or both RING domains, were tested for their ability to catalyze ubiquitylation in vitro. In these assays, either ORTH1 RING domain is capable of promoting ubiquitylation. The PHD alone is not active as an E3 ligase, nor is it required for ligase activity. GFP-ORTH1 and GFP-ORTH2 are nuclear-localized in transgenic Arabidopsis plants. Overexpression of ORTH1 or ORTH2 in Arabidopsis leads to an altered flowering time. Inspection of DNA methylation at FWA and Cen180 repeats revealed hypomethylation when ORTH proteins were overexpressed. Once initiated, a late-flowering phenotype persisted in the absence of the ORTH transgene, consistent with epigenetic effects at FWA. We conclude that ORTH proteins are E3 ligases mediating DNA methylation status in vivo. [source] AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatmentTHE PLANT JOURNAL, Issue 4 2006Jinhua Luo Summary CHIP proteins are E3 ubiquitin ligases that promote degradation of Hsp70 and Hsp90 substrate proteins through the 26S proteasome in animal systems. A CHIP-like protein in Arabidopsis, AtCHIP, also has E3 ubiquitin ligase activity and has important roles to play under conditions of abiotic stress. In an effort to study the mode of action of AtCHIP in plant cells, proteins that physically interact with it were identified. Like its animal orthologs, AtCHIP interacts with a unique class of ubiquitin-conjugating enzymes (UBC or E2) that belongs to the stress-inducible UBC4/5 class in yeast. AtCHIP also interacts with other proteins, including an A subunit of protein phosphatase 2A (PP2A). This PP2A subunit appears to be a substrate of AtCHIP, because it can be ubiquitylated by AtCHIP in vitro and because the activity of PP2A is increased in AtCHIP -overexpressing plants in the dark or under low-temperature conditions. Unlike the rcn1 mutant, that has reduced PP2A activity due to a mutation in one of the A subunit genes of PP2A, AtCHIP -overexpressing plants are more sensitive to ABA treatment. Since PP2A was previously shown to be involved in low-temperature responses in plants, the low-temperature-sensitive phenotype observed in AtCHIP -overexpressing plants might be partly due to the change in PP2A activity. These data suggest that the E3 ubiquitin ligase AtCHIP may function upstream of PP2A in stress-responsive signal transduction pathways under conditions of low temperature or in the dark. [source] |