Lift Coefficient (lift + coefficient)

Distribution by Scientific Domains


Selected Abstracts


A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2010
Yan Bao
Abstract An alternative characteristic-based scheme, the two-step Taylor-characteristic-based Galerkin method is developed based on the introduction of multi-step temporal Taylor series expansion up to second order along the characteristic of the momentum equation. Contrary to the classical characteristic-based split (CBS) method, the current characteristic-based method does not require splitting the momentum equation, and segregate the calculation of the pressure from that of the velocity by using the momentum,pressure Poisson equation method. Some benchmark problems are used to examine the effectiveness of the proposed algorithm and to compare with the original CBS method, and the results show that the proposed method has preferable accuracy with less numerical dissipation. We further applied the method to the numerical simulation of flow around equilateral triangular cylinder with different incidence angles in free stream. In this numerical investigation, the flow simulations are carried out in the low Reynolds number range. Instantaneous streamlines around the cylinder are used as a means to visualize the wake region behind, and they clearly show the flow pattern around the cylinder in time. The influence of incidence angle on flow characteristic parameters such as Strouhal number, Drag and Lift coefficients are discussed quantitatively. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Wing wear, aerodynamics and flight energetics in bumblebees (Bombus terrestris): an experimental study

FUNCTIONAL ECOLOGY, Issue 4 2001
A. Hedenström
Summary 1,Previous work has shown that wing wear increases mortality rate in bumblebees. Two proximate explanations have been suggested to account for this: increased energy flight costs and increased predation risk due to reduced manoeuvrability. 2,Wing wear was mimicked by experimentally clipping the forewing distal trailing edge, causing a 10% wing area reduction. Experimental and sham control bumblebees were induced to hover in a flight respirometry chamber for measuring metabolic rate of hovering. Simultaneous video and sound recordings were taken for wingbeat kinematic data required for an aerodynamic analysis. 3,In the experimental group with reduced wing area we measured increased wingbeat frequency, lift coefficient and induced power, but a reduced profile power. The mechanical power output, assuming perfect elastic storage in the flight system, remained largely unchanged after the wing-trimming treatment. 4,Metabolic flight costs (CO2 production rate) did not increase significantly in the reduced wing area group, which is in line with the aerodynamic power output. 5,Our results indicate that an increase of flight cost due to wing wear is not a likely explanation for increased mortality rate in bumblebees. Wing wear may, however, affect escape performance from predators. [source]


Laminar separation bubble on an Eppler 61 airfoil

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010
Samir B. Savaliya
Abstract Laminar separation bubble that occurs on the suction side of the Eppler 61 airfoil at Re=46000 is studied. The incompressible flow equations are solved using a stabilized finite element method. No turbulence model is used. The variation of the bubble length and its location, with the angle of attack (,), is studied in detail. An abrupt increase in the lift coefficient is observed at ,,4.5°. It is found to be related to a sudden decrease in the separation bubble length at the trailing edge of the airfoil. Significant differences are observed in the results from the 2D and 3D computations. Stall is observed in 3D simulations, but is found to be absent in 2D. The laminar bubble, which fails to reattach in 3D for ,>14°, continues to reattach for , as large as 20° in the 2D computations. Reynolds stress calculations in both 2D and 3D indicate the extent to which the outer flow is affected by the presence of bubble. It is found that the Reynolds stress components and are of comparable order of magnitude indicating that spanwise fluctuations are significant. The effect of the time window used to compute the time-averaged aerodynamic coefficients is studied. The time-averaged and root mean square (rms) value of the aerodynamic coefficients are calculated for both 2D and 3D computations and compared with the previously published experimental results. The 3D computations show good agreement with the earlier data. The variation of the rms value of the aerodynamic coefficients with angle of attack shows certain peaks. The cause of their appearance is investigated. The effect of Reynolds number is studied. The increase in Re at ,=10° is found to reduce the bubble length and cause it to move closer to the leading edge. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Examination of the three-dimensional geometry of cetacean flukes using computed tomography scans: Hydrodynamic implications

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 6 2007
Frank E. Fish
Abstract The flukes of cetaceans function in the hydrodynamic generation of forces for thrust, stability, and maneuverability. The three-dimensional geometry of flukes is associated with production of lift and drag. Data on fluke geometry were collected from 19 cetacean specimens representing eight odontocete genera (Delphinus, Globicephala, Grampus, Kogia, Lagenorhynchus, Phocoena, Stenella, Tursiops). Flukes were imaged as 1 mm thickness cross-sections using X-ray computer-assisted tomography. Fluke shapes were characterized quantitatively by dimensions of the chord, maximum thickness, and position of maximum thickness from the leading edge. Sections were symmetrical about the chordline and had a rounded leading edge and highly tapered trailing edge. The thickness ratio (maximum thickness/chord) among species increased from insertion on the tailstock to a maximum at 20% of span and then decreasing steadily to the tip. Thickness ratio ranged from 0.139 to 0.232. These low values indicate reduced drag while moving at high speed. The position of maximum thickness from the leading edge remained constant over the fluke span at an average for all species of 0.285 chord. The displacement of the maximum thickness reduces the tendency of the flow to separate from the fluke surface, potentially affecting stall patterns. Similarly, the relatively large leading edge radius allows greater lift generation and delays stall. Computational analysis of fluke profiles at 50% of span showed that flukes were generally comparable or better for lift generation than engineered foils. Tursiops had the highest lift coefficients, which were superior to engineered foils by 12,19%. Variation in the structure of cetacean flukes reflects different hydrodynamic characteristics that could influence swimming performance. Anat Rec, 290:614,623, 2007. © 2007 Wiley-Liss, Inc. [source]