Home About us Contact | |||
Antisense Suppression (antisense + suppression)
Selected AbstractsAntisense suppression of tau in cultured rat oligodendrocytes inhibits process formationJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2008David Gordon Abstract The microtubule-associated protein tau is integral to neuronal process development and has a role in the pathogenesis of several neurodegenerative conditions. We examined possible roles for tau in cultured oligodendrocyte process formation by using antisense oligonucleotide treatment. Inhibition of tau synthesis with single oligonucleotides resulted in decreased tau protein levels and significantly shorter cellular processes. Simultaneous use of two nonoverlapping oligonucleotides caused a major reduction in tau levels and severely inhibited process outgrowth. The timing of oligonucleotide addition to oligodendrocyte cultures was important, with addition of antisense at the time of plating into culture having the most significant effect on morphology through reduction of tau expression. © 2008 Wiley-Liss, Inc. [source] The role of auxin-binding protein 1 in the expansion of tobacco leaf cellsTHE PLANT JOURNAL, Issue 6 2001Jin-Gui Chen Summary Tobacco leaf was used to investigate the mechanism of action of auxin-binding protein 1 (ABP1). The distributions of free auxin, ABP1, percentage of leaf nuclei in G2 and the amount of auxin-inducible growth were each determined in control tobacco leaves and leaves over-expressing Arabidopsis ABP1. These parameters were compared with growth of tobacco leaves, measured both spatially and temporally throughout the entire expansion phase. Within a defined window of leaf development, juvenile leaf cells that inducibly expressed Arabidopsis ABP1 prematurely advanced nuclei to the G2 phase. The ABP1-induced increase in cell expansion occured before the advance to the G2 phase, indicating that the ABP1-induced G2 phase advance is an indirect effect of cell expansion. The level of ABP1 was highest at the position of maximum cell expansion, maximum auxin-inducible growth and where the free auxin level was the lowest. In contrast, the position of maximum cell division correlated with higher auxin levels and lower ABP1 levels. Consistent with the correlations observed in leaves, tobacco cells (BY-2) in culture displayed two dose-dependent responses to auxin. At a low auxin concentration, cells expanded, while at a relatively higher concentration, cells divided and incorporated [3H]-thymidine. Antisense suppression of ABP1 in these cells dramatically reduced cell expansion with negligible effect on cell division. Taken together, the data suggest that ABP1 acts at a relatively low level of auxin to mediate cell expansion, whereas high auxin levels stimulate cell division via an unidentified receptor. [source] The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thalianaPHYSIOLOGIA PLANTARUM, Issue 1 2005Motoko Awazuhara SULTR2;1 is a low-affinity sulfate transporter expressed in the vascular tissues of roots and leaves for interorgan transport of sulfate in Arabidopsis thaliana. Transgenic Arabidopsis carrying a fusion gene construct of SULTR2;1 5,-promoter region and ,-glucuronidase coding sequence (GUS) demonstrated that within the reproductive tissues, SULTR2;1 is specifically expressed in the bases and veins of siliques and in the funiculus, which connects the seeds and the silique. The antisense suppression of SULTR2;1 mRNA caused decrease of sulfate contents in seeds and of thiol contents both in seeds and leaves, as compared with the wildtype (WT). The effect of antisense suppression of SULTR2;1 on seed sulfur status was determined by introducing a sulfur-indicator construct, p35S::,SRx3:GUS, which drives the expression of GUS reporter under a chimeric cauliflower mosaic virus 35S promoter containing a triplicate repeat of sulfur-responsive promoter region of soybean ,-conglycinin , subunit (,SRx3). The mature seeds of F1 plants carrying both the SULTR2;1 antisense and p35S::,SRx3:GUS constructs exhibited significant accumulation of GUS activities on sulfur deficiency, as compared with those carrying only the p35S::,SRx3:GUS construct in the WT background. These results suggested that SULTR2;1 is involved in controlling translocation of sulfate into developing siliques and may modulate the sulfur status of seeds in A. thaliana. [source] A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress toleranceTHE PLANT JOURNAL, Issue 1 2002Francisco Llorente Summary A cDNA from Arabidopsis corresponding to a new cold-inducible gene, RCI3 (for Rare Cold Inducible gene 3), was isolated. Isoelectric focusing electrophoresis and staining of peroxidase activity demonstrated that RCI3 encodes an active cationic peroxidase. RNA-blot analysis revealed that RCI3 expression in response to low temperature is negatively regulated by light, as RCI3 transcripts were exclusively detected in etiolated seedlings and roots of adult plants. RCI3 expression was also induced in etiolated seedlings, but not in roots, exposed to dehydration, salt stress or ABA, indicating that it is subjected to a complex regulation through different signaling pathways. Analysis of transgenic plants containing RCI3::GUS fusions established that this regulation occurs at the transcriptional level during plant development, and that cold-induced RCI3 expression in roots is mainly restricted to the endodermis. Plants overexpressing RCI3 showed an increase in dehydration and salt tolerance, while antisense suppression of RCI3 expression gave dehydration- and salt-sensitive phenotypes. These results indicate that RCI3 is involved in the tolerance to both stresses in Arabidopsis, and illustrate that manipulation of RCI3 has a potential with regard to plant improvement of stress tolerance. [source] Regulation of plant water loss by manipulating the expression of phospholipase D,THE PLANT JOURNAL, Issue 2 2001Yongming Sang Summary Phospholipase D (PLD) has been implicated in various processes, including signal transduction, membrane trafficking, and membrane degradation. Multiple forms of PLD with distinct biochemical properties have been described in the cell. In Arabidopsis, PLD, and PLD,, but not PLD,, were detected in guard cells, and antisense suppression resulted in a specific loss of PLD,. The abrogation of PLD, rendered plants less sensitive to abscisic acid and impaired stomatal closure induced by water deficits. PLD,-depleted plants exhibited accelerated transpirational water loss and a decreased ability to tolerate drought stress. Overexpression of PLD, enhanced the leaf's sensitivity to abscisic acid. These findings provide molecular and physiological evidence that PLD, plays a crucial role in regulating stomatal movement and plant-water status. [source] |