Home About us Contact | |||
Anti-predation Behaviour (anti-predation + behaviour)
Selected AbstractsNest protection in mallards Anas platyrhynchos: untangling the role of crypsis and parental behaviourFUNCTIONAL ECOLOGY, Issue 5 2008J. Kreisinger Summary 1The covering of clutches with nest material is generally considered to improve the thermal environment of developing embryos. Here we tested an alternative hypothesis: that this behaviour reduces the risk of clutch detection by predators and hence, fulfils a cryptic anti-predation function in a ground-nesting non-passerine bird, the mallard. In addition, we assess the anti-predation function of the direct presence of an incubating parent on the nest for the first time in a ground-nesting non-passerine bird. 2We compared predation rates of real mallard nests with two types of artificial clutches: (i) covered with nest material and (ii) uncovered. In addition, the cryptic effectiveness of nest material, female body presence, and uncovered clutch were assessed using a simulated search for nests on photographs by human volunteers. This allowed us to evaluate separately the impact of overall crypsis (covering of the clutch by nest material and colouration of the female feather) and the direct protective capacity of the incubating female. 3Our data demonstrate that in mallards, concealment of the clutch with nest material reduces the risk of nest predation. Although the incubating female seems to provide less effective crypsis to the nest than nest material alone, the presence of the female on the clutch enhanced nest survival, suggesting a significant anti-predation capacity of the incubating parent in this species. 4Contrary to some previous studies, the relative effects of crypsis and parental anti-predation behaviour on nest survival did not differ with respect to nest concealment by surrounding vegetation. [source] How starvation risk in Redshanks Tringa totanus results in predation mortality from Sparrowhawks Accipiter nisusIBIS, Issue 2008WILL CRESSWELL Redshanks Tringa totanus that are preyed upon by Sparrowhawks Accipiter nisus at the Tyninghame Estuary, Firth of Forth, Scotland, provide an example of how the starvation,predation risk trade-off results in mortality. In this trade-off, animals cannot always optimize anti-predation behaviour because anti-predation behaviours, such as avoiding predators, are usually incompatible with foraging behaviours that might maximize intake rates. Therefore, as animals compensate for starvation risk, predation risk increases. Sparrowhawks are the main direct cause of death in Redshanks at Tyninghame. Sparrowhawk attack rate is determined by Redshank vulnerability, and vulnerability decreases as group size and distance to cover increase, and probably as spacing decreases. But reduction of predation vulnerability reduces feeding rate because areas away from cover are less food-profitable and grouping results in increased interference competition. Increased starvation risk in midwinter means Redshanks are forced to feed on highly profitable prey, Orchestia amphipods, the behaviour of which means that Redshanks are forced to feed vulnerably, in widely spaced groups, close to predator-concealing cover. Therefore, it is the constraints that limit the ability of Redshanks to feed in large, dense flocks away from cover that ultimately lead to mortality. We investigate this hypothesis further by testing the prediction that mortality can be predicted directly by cold weather and population density. We demonstrate that the overall number of Redshanks and the proportion of Redshanks killed increase in cold months when controlling for population size. We also demonstrate that the proportion of Redshanks killed increases when there are fewer Redshanks present, because the success rate of hunting Sparrowhawks increases, probably because effective management of predation risk through flocking is constrained by a low population size. Redshanks therefore provide an example of how directly mortality caused by predation arises from starvation risk and other constraints that prevent animals from optimizing anti-predation behaviour. [source] Non-lethal effects of predation in birdsIBIS, Issue 1 2008WILL CRESSWELL Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ,density' effects), where prey is consumed, or through non-lethal effects (trait-mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non-lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non-lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti-predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade-offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long-term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging,predation risk trade-off is probably an effective framework for understanding the importance of non-lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade-off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non-lethal effects decouple the relationship between predator density and direct mortality rate. The trade-off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate. [source] How starvation risk in Redshanks Tringa totanus results in predation mortality from Sparrowhawks Accipiter nisusIBIS, Issue 2008WILL CRESSWELL Redshanks Tringa totanus that are preyed upon by Sparrowhawks Accipiter nisus at the Tyninghame Estuary, Firth of Forth, Scotland, provide an example of how the starvation,predation risk trade-off results in mortality. In this trade-off, animals cannot always optimize anti-predation behaviour because anti-predation behaviours, such as avoiding predators, are usually incompatible with foraging behaviours that might maximize intake rates. Therefore, as animals compensate for starvation risk, predation risk increases. Sparrowhawks are the main direct cause of death in Redshanks at Tyninghame. Sparrowhawk attack rate is determined by Redshank vulnerability, and vulnerability decreases as group size and distance to cover increase, and probably as spacing decreases. But reduction of predation vulnerability reduces feeding rate because areas away from cover are less food-profitable and grouping results in increased interference competition. Increased starvation risk in midwinter means Redshanks are forced to feed on highly profitable prey, Orchestia amphipods, the behaviour of which means that Redshanks are forced to feed vulnerably, in widely spaced groups, close to predator-concealing cover. Therefore, it is the constraints that limit the ability of Redshanks to feed in large, dense flocks away from cover that ultimately lead to mortality. We investigate this hypothesis further by testing the prediction that mortality can be predicted directly by cold weather and population density. We demonstrate that the overall number of Redshanks and the proportion of Redshanks killed increase in cold months when controlling for population size. We also demonstrate that the proportion of Redshanks killed increases when there are fewer Redshanks present, because the success rate of hunting Sparrowhawks increases, probably because effective management of predation risk through flocking is constrained by a low population size. Redshanks therefore provide an example of how directly mortality caused by predation arises from starvation risk and other constraints that prevent animals from optimizing anti-predation behaviour. [source] |