Antileishmanial Activity (antileishmanial + activity)

Distribution by Scientific Domains


Selected Abstracts


New Clerodane Diterpenoids from Laetia procera (Poepp.) Eichler (Flacourtiaceae), with Antiplasmodial and Antileishmanial Activities.

CHEMINFORM, Issue 8 2006
Valerie Jullian
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access the actual ChemInform Abstract, please click on HTML or PDF. [source]


Synthesis, Cytotoxicity and Antileishmanial Activity of Some N -(2-(indol-3-yl)ethyl)-7-chloroquinolin-4-amines

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 6 2010
Elaine S. Coimbra
We report herein the condensation of 4,7-dichloroquinoline (1) with tryptamine (2) and D-tryptophan methyl ester (3). Hydrolysis of the methyl ester adduct (5) yielded the free acid (6). The compounds were evaluated in vitro for activity against four different species of Leishmania promastigote forms and for cytotoxic activity against Kb and Vero cells. Compound (5) showed good activity against the Leishmania species tested, while all three compounds displayed moderate activity in both Kb and Vero cells. [source]


In vitro Leishmanicidal activity of naturally occurring chalcones

PHYTOTHERAPY RESEARCH, Issue 2 2001
Oliver Kayser
Abstract A variety of chalcones have been shown to exhibit activity against Leishmania parasites. In contrast to synthetic or semisynthetic chalcones, only a few plant-derived compounds have been investigated. To provide a scientific rational for the antiprotozoal potency of plants used in ethnomedicine and containing chalcones, and in the search for new antiprotozoal drugs, we have carried out a primary screening for in vitro leishmanicidal activity of 20 chalcones isolated from plants. The compounds were tested against extracellular promastigotes of Leishmania donovani, L. infantum, L. enrietii and L. major, and against intracellular amastigote L. donovani residing within murine macrophages. Against the extracellular Leishmania (L. donovani), most compounds were active with EC50 values between 0.07 and 2.01,µg/mL. Some of these chalcones, 2,,4,-dihydroxy-4-methoxychalcone, 2,-hydroxy-3,4-dimethoxychalcone and 2-hydroxy-4,4,-dimethoxychalcone also significantly inhibited the intracellular survival of L. donovani parasites with EC50 values between 0.39 and 0.41,µg/mL. When tested against murine bone marrow-derived macrophages as a mammalian host cell control, all compounds with antileishmanial activities also proved to be cytotoxic to varying extents (EC50 0.19,2.06,µg/mL). Correlations between molecular structures and antileishmanial activity are discussed in detail. Specific compounds are illustrated with emphasis on their mode of action and potential for the development of selective antiprotozoal agents. Copyright ­© 2001 John Wiley & Sons, Ltd. [source]


Tissue granuloma structure-function in experimental visceral leishmaniasis

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 5 2001
Henry W. Murray
In experimental visceral leishmaniasis in normal mice (BALB/c, C57BL/6) acquired resistance to Leishmania donovani, a protozoan which targets tissue macrophages, depends upon T cells, Th1 cell-type cytokine generation and activated mononuclear phagocytes. In the intact host, initial control and eventual resolution of L. donovani hepatic infection in normal mice is expressed by and accomplished within well-formed, mature tissue granulomas. In the liver, these immunologically active, inflammatory structures are assembled around a core of fused, parasitized resident macrophages (Kupffer cells) which come to be encircled by both cytokine-secreting T cells and influxing leishmanicidal blood monocytes. This pro-host defense granuloma structure-function relationship, in which histologically mature granulomas provide the microenvironment for intracellular L. donovani killing, however, is only one of seven which have been identified through experimental modifications in this model. This report reviews these structure-function relationships and illustrates the broad spectrum of additional possible responses. These responses range from structurally intact granulomas which provide no antileishmanial function (the ,ineffective' granuloma), to enlarged granulomas which show enhanced parasite killing (the ,hypertrophied' granuloma), to effective antileishmanial activity in the absence of any tissue reaction (the ,invisible' granuloma). [source]


Crystal structure and theoretical calculations of Julocrotine, a natural product with antileishmanial activity,,

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2008
Rafael Y. O. Moreira
Abstract Julocrotine, N -(2,6-dioxo-1-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source]


In vitro Leishmanicidal activity of naturally occurring chalcones

PHYTOTHERAPY RESEARCH, Issue 2 2001
Oliver Kayser
Abstract A variety of chalcones have been shown to exhibit activity against Leishmania parasites. In contrast to synthetic or semisynthetic chalcones, only a few plant-derived compounds have been investigated. To provide a scientific rational for the antiprotozoal potency of plants used in ethnomedicine and containing chalcones, and in the search for new antiprotozoal drugs, we have carried out a primary screening for in vitro leishmanicidal activity of 20 chalcones isolated from plants. The compounds were tested against extracellular promastigotes of Leishmania donovani, L. infantum, L. enrietii and L. major, and against intracellular amastigote L. donovani residing within murine macrophages. Against the extracellular Leishmania (L. donovani), most compounds were active with EC50 values between 0.07 and 2.01,µg/mL. Some of these chalcones, 2,,4,-dihydroxy-4-methoxychalcone, 2,-hydroxy-3,4-dimethoxychalcone and 2-hydroxy-4,4,-dimethoxychalcone also significantly inhibited the intracellular survival of L. donovani parasites with EC50 values between 0.39 and 0.41,µg/mL. When tested against murine bone marrow-derived macrophages as a mammalian host cell control, all compounds with antileishmanial activities also proved to be cytotoxic to varying extents (EC50 0.19,2.06,µg/mL). Correlations between molecular structures and antileishmanial activity are discussed in detail. Specific compounds are illustrated with emphasis on their mode of action and potential for the development of selective antiprotozoal agents. Copyright ­© 2001 John Wiley & Sons, Ltd. [source]