Anti-inflammatory Profile (anti-inflammatory + profile)

Distribution by Scientific Domains


Selected Abstracts


A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis

JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2007
L. Peran
Abstract Aims:, The intestinal anti-inflammatory effects of three probiotics with immunomodulatory properties, Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium lactis, were evaluated and compared in the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Methods and Results:, Colitis was induced in rats by intracolonic administration of 10 mg of TNBS dissolved in 0·25 ml of 50% ethanol. Each probiotic was administered orally (5 × 108 CFU suspended in 0·5 ml of skimmed milk) for 3 weeks, starting 2 weeks before the administration of TNBS. Colonic damage was evaluated histologically and biochemically 1 week after TNBS instillation. The results obtained revealed that all probiotics assayed showed intestinal anti-inflammatory effects, macroscopically evidenced by a significant reduction in the colonic weight/length ratio. Only B. lactis showed a lower incidence of diarrhoea in comparison with untreated rats. Biochemically, all probiotics restored colonic glutathione levels, depleted as a consequence of the oxidative stress of the inflammatory process. Bifidobacterium lactis treatment reduced colonic tumour necrosis factor (TNF)-, production, and inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) expression; L. acidophilus administration reduced colonic leukotriene B4 production and iNOS expression and L. casei intake was associated with a decrease in colonic COX-2 expression. Conclusion:, The three probiotics assayed have shown intestinal anti-inflammatory activity in the TNBS model of rat colitis, although each probiotic shows its own anti-inflammatory profile. Significance and Impact of the Study:, These probiotics could be considered as potential adjuvants in the treatment of inflammatory bowel disease, although more studies are required in order to demonstrate their efficacy in humans. [source]


Ridogrel, a dual thromboxane synthase inhibitor and receptor antagonist: anti-inflammatory profile in inflammatory bowel disease

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2000
Carty
Background: Thromboxanes, prostaglandins, reactive oxygen metabolites and pro-inflammatory cytokines are produced in excess in inflammatory bowel disease. Preliminary reports suggest that ridogrel, a thromboxane synthesis inhibitor and receptor blocker, may have therapeutic benefits in ulcerative colitis. Aims: To investigate the anti-inflammatory profile of ridogrel. Methods: The effects of ridogrel on the production of eicosanoids, reactive oxygen metabolites and cytokines by cultured inflamed colorectal mucosal biopsies were made using ELISA and chemiluminescence, reactive oxygen metabolite generation in a cell-free system, and platelet activation using flow cytometry. The effects of oral ridogrel on mucosal release of eicosanoids in two patients with active ulcerative colitis were assessed using rectal dialysis. Results: Ridogrel significantly reduced the release of thromboxane B2, but not prostaglandin E2 or tumour necrosis factor-,, from biopsies (P < 0.01 for 10 ,M ridogrel). Ridogrel showed no direct antioxidant activity but significantly reduced reactive oxygen metabolite production from cultured biopsies (P < 0.01 for 10 ,M ridogrel). Platelet activation in vitro was inhibited by ridogrel (P , 0.05 for , 10 ,M ridogrel). Mean rectal mucosal thromboxane B2 release was reduced to 86% of pre-treatment levels in two patients treated with oral ridogrel. Conclusions: Its inhibition of mucosal production of thromboxane B2, reactive oxygen metabolites, and of platelet activation, suggests that ridogrel could have a therapeutic role in inflammatory bowel disease. [source]


Scalaradial, a Dialdehyde-Containing Marine Metabolite That Causes an Unexpected Noncovalent PLA2 Inactivation

CHEMBIOCHEM, Issue 13 2007
Maria Chiara Monti Dr.
Abstract Several marine terpenoids that contain at least one reactive aldehyde group, such as manoalide and its congeners, possess interesting anti-inflammatory activities that are mediated by the covalent inactivation of secretory phospholipase A2 (sPLA2). Scalaradial, a 1,4-dialdehyde marine terpenoid that was isolated from the sponge Cacospongia mollior, is endowed with a relevant anti-inflammatory profile, both in vitro and in vivo, through selective sPLA2 inhibition. Due to its peculiar dialdehyde structural feature, it has been proposed that scalaradial exerts its enzymatic inactivation by means of an irreversible covalent modification of its target. In the context of our on-going research on anti-PLA2 natural products and their interaction at a molecular level, we studied scalaradial in an attempt to shed more light on the molecular mechanism of its PLA2 inhibition. A detailed analysis of the reaction profile between scalaradial and bee venom PLA2, a model sPLA2 that shares a high structural homology with the human synovial enzyme, was performed by a combination of spectroscopic techniques, chemical reactions (selective modifications, biomimetic reactions), and classical protein chemistry (such as proteolytic digestion, HPLC and mass spectrometry), along with molecular modeling studies. Unexpectedly, our data clearly indicated the noncovalent forces to be the leading event in the PLA2 inactivation process; thus, the covalent modification of the enzyme emerges as only a minor side event in the ligand,enzyme interaction. The overall picture might be useful in the design of SLD analogues as new potential anti-inflammatory compounds that target sPLA2 enzymes. [source]


Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy

CLINICAL & EXPERIMENTAL ALLERGY, Issue 4 2005
S. T. Holgate
Summary Omalizumab is a humanized monoclonal anti-IgE antibody developed for the treatment of allergic disease, with established efficacy in patients with moderate-to-severe allergic asthma and in patients with intermittent (seasonal) and persistent (perennial) allergic rhinitis (AR). Omalizumab is known to result in a marked reduction in serum levels of free IgE and down-regulation of IgE receptors on circulating basophils. Recent work has shed further light on its mechanism of action, showing significant and profound reductions in tissue (nasal and bronchial) eosinophils and in bronchial IgE+ cells (mast cells), as well as T cells and B cells. Omalizumab treatment was also shown to be associated with down-regulation of IgE receptors on circulating (precursor) dendritic cells, suggesting that blocking IgE may inhibit more chronic aspects of allergic inflammation involving T cell activation. Further work with omalizumab demonstrated it to have important benefits in patients with poorly controlled asthma despite high-dose inhaled corticosteroid therapy, and analysis of clinical data suggests that the patients who are the best ,responders' to anti-IgE treatment are those with asthma at the more severe end of the spectrum. Notably, systemic anti-IgE therapy with omalizumab has been shown to improve symptoms, quality of life and disease control (asthma exacerbations) in patients with concomitant asthma and persistent AR. These impressive clinical data and the studies elucidating the anti-inflammatory profile of omalizumab also serve to emphasize the fundamental importance of IgE in the pathogenesis of allergic diseases. [source]