anti-HCV Activity (anti-hcv + activity)

Distribution by Scientific Domains


Selected Abstracts


HCV796: A selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity In Vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus,

HEPATOLOGY, Issue 3 2009
Norman M. Kneteman
Anti-hepatitis C virus (HCV) drug development has been challenged by a lack of experience with inhibitors inclusive of in vitro, animal model, and clinical study. This manuscript outlines activity and correlation across such a spectrum of models and into clinical trials with a novel selective nonstructural protein 5B (NS5B) polymerase inhibitor, HCV796. Enzyme assays yielded median inhibitory concentration (IC50) values of 0.01 to 0.14 ,M for genotype 1, with half maximal effective concentration (EC50s) of 5 nM and 9 nM against genotype 1a and 1b replicons. In the chimeric mouse model, a 2.02 ± 0.55 log reduction in HCV titer was seen with monotherapy, whereas a suboptimal dose of 30 mg/kg three times per day in combination with interferon demonstrated a 2.44 log reduction (P = 0.001 versus interferon alone) Clinical outcomes in combination with pegylated interferon and ribavirin have revealed additive efficacy in treatment naïve patients. Abnormal liver function test results were observed in 8% of HCV-796 patients treated for over 8 weeks, resulting in suspension of further trial activity. Conclusion: The RNA-dependent RNA polymerase inhibitor HCV796 demonstrated potent anti-HCV activity consistently through enzyme inhibition assays, subgenomic replicon, and chimeric mouse studies. Strong correlations of outcomes in the mouse model were seen with subsequent clinical trials, including a plateau in dose-related antiviral activity and additive impact from combination therapy with interferon. These outcomes demonstrate the utility of the range of in vitro and in vivo models now available for anti-HCV drug development and support the potential utility of polymerase inhibitors in future combination therapies for HCV treatment. (HEPATOLOGY 2009.) [source]


CD56+ T cells inhibit hepatitis C virus replication in human hepatocytes,

HEPATOLOGY, Issue 3 2009
Li Ye
CD56+ T cells are abundant in liver and play an important role in defense against viral infections. However, the role of CD56+ T cells in control of hepatitis C virus (HCV) infection remains to be determined. We investigated the noncytolytic anti-HCV activity of primary CD56+ T cells in human hepatocytes. When HCV Japanese fulminant hepatitis-1 (JFH-1),infected hepatocytes were co-cultured with CD56+ T cells or incubated in media conditioned with CD56+ T cell culture supernatants (SN), HCV infectivity and replication were significantly inhibited. The antibodies to interferon (IFN)-, or IFN-, receptor could largely block CD56+ T cell,mediated anti-HCV activity. Investigation of mechanism(s) responsible for CD56+ T cell,mediated noncytolytic anti-HCV activity showed that CD56+ T SN activated the multiple elements of janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and enhanced the expression of IFN regulatory factors (IRFs) 1, 3, 7, 8, and 9, resulting in the induction of endogenous IFN-,/, expression in hepatocytes. Moreover, CD56+ T SN treatment inhibited the expression of HCV-supportive micro RNA (miRNA)-122 and enhanced the levels of anti-HCV miRNA-196a in human hepatocytes. Conclusion: These findings provide direct in vitro evidence at cellular and molecular levels that CD56+ T cells may have an essential role in innate immune cell,mediated defense against HCV infection. (HEPATOLOGY 2009.) [source]


Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes

HEPATOLOGY, Issue 5 2003
Koichi Watashi
Persistent infection of hepatitis C virus (HCV) is a major cause of liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Searching for a substance with anti-HCV potential, we examined the effects of a variety of compounds on HCV replication using a HCV subgenomic replicon cell culture system. Consequently, the immunosuppressant cyclosporin A (CsA) was found to have a suppressive effect on the HCV replicon RNA level and HCV protein expression in these cells. CsA also inhibited multiplication of the HCV genome in a cultured human hepatocyte cell line infected with HCV using HCV-positive plasma. This anti-HCV activity of CsA appeared to be independent of its immunosuppressive function. In conclusion, our results suggest that CsA may represent a new approach for the development of anti-HCV therapy. [source]


Suppression of hepatitis C virus replication by protein kinase C-related kinase 2 inhibitors that block phosphorylation of viral RNA polymerase

JOURNAL OF VIRAL HEPATITIS, Issue 10 2009
S.-J. Kim
Summary., Hepatitis C virus (HCV) infection is a serious threat to human health worldwide. In spite of the continued search for specific and effective anti-HCV therapies, the rapid emergence of drug-resistance variants has been hampering the development of anti-HCV drugs designed to target viral enzymes. Targeting host factors has therefore emerged as an alternative strategy offering the potential to circumvent the ever-present complication of drug resistance. We previously identified protein kinase C-related kinase 2 (PRK2) as a cellular kinase that phosphorylates the HCV RNA-dependent RNA polymerase (RdRp). Here, we report the anti-HCV activity of HA1077, also known as fasudil, and Y27632, which blocks HCV RdRp phosphorylation by suppressing PRK2 activation. Treatment of a Huh7 cell line, stably expressing a genotype 1b HCV subgenomic replicon RNA, with 20 ,m each of HA1077 and Y27632 reduced the HCV RNA level by 55% and 30%, respectively. A combination of the inhibitors with 100 IU/mL interferon , (IFN-,) significantly potentiated the anti-HCV drug activities resulting in approximately a 2-log10 viral RNA reduction. We also found that IFN-, does not activate PRK2 as well as its upstream kinase PDK1 in HCV-replicating cells. Furthermore, treatment of HCV-infected cells with 20 ,m each of HA1077 and Y27632 reduced the levels of intracellular viral RNA by 70% and 92%, respectively. Taken together, the results identify PRK2 inhibitors as potential antiviral drugs that act by suppressing HCV replication via inhibition of viral RNA polymerase phosphorylation. [source]


Natural killer cells suppress full cycle HCV infection of human hepatocytes

JOURNAL OF VIRAL HEPATITIS, Issue 12 2008
S.-H. Wang
Summary., The role of natural killer (NK) cells in controlling hepatitis C virus (HCV) infection and replication has not been fully delineated. We examined NK cell-mediated noncytolytic effect on full cycle HCV infection of human hepatocytes. Human hepatocytes (Huh7.5.1 cells) co-cultured with NK cells or treated with supernatants (SN) from NK cells cultures had significantly lower levels of HCV RNA and protein than control cells. This NK cell-mediated anti-HCV activity could be largely abolished by antibody to interferon-gamma (IFN-,). The investigation of the mechanisms for NK cell-mediated anti-HCV activity showed that NK SN-treated hepatocytes expressed higher levels of IFN-,/, than the control cells. NK SN also enhanced IFN regulatory factor-3 and 7 expression in the hepatocytes. In addition, NK SN enhanced the expression of signal transducer and activator of transcription 1 and 2, the nuclear factors that are essential for the activation of IFN-mediated antiviral pathways. These data provide direct evidence at cellular and molecular levels that NK cells have a key role in suppressing HCV infection of and replication in human hepatocytes. [source]