Antiferromagnetic Coupling (antiferromagnetic + coupling)

Distribution by Scientific Domains


Selected Abstracts


A New Trinuclear Linear Copper(II) Complex: Unusual Crystal Structure with Semi-Coordinated Thiophene Moieties and Weak Antiferromagnetic Coupling Through the Bridging Imidazolate Rings

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2004
Yufei F. Song
Abstract A trinuclear copper(II) complex, [Cu3(imthio)2(NO3)4(MeOH)2] [where Himthio is 1,1-bis(imidazol-2-yl)-3-(thiophen-2-yl)-2-azapropane], has been synthesized by the reaction of Himthio with Cu(NO3)2·3H2O in MeOH. The structure of the copper complex is centrosymmetric and contains a linear trinuclear array of copper atoms. The central copper(II) ion, Cu1, which lies on an inversion centre, is equatorially coordinated by four nitrogen atoms from two anionic imthio ligands and axially by two semicoordinated thiophene sulfur atoms to give an octahedral environment (Cu1,S1 3.136 Å). The Himthio ligand bridges Cu1 and the terminal copper(II) ions through imidazole nitrogen atoms. The coordination around the external ions is completed by the oxygen atoms from two nitrate groups and by a methanol molecule in a distorted square-pyramidal geometry. The two terminal copper(II) complexes can be considered to be chelating ligands for the central CuII ion. The EPR spectrum of the complex in MeOH at 77 K shows two mononuclear species, as is fully confirmed by EPR simulation. Magnetic susceptibility of the complex shows weak antiferromagnetic behaviour (J = ,71.37 cm,1) caused by the overlapping of the magnetic orbitals of the copper atoms and the bridging imidazolate rings. (© Wiley-VCH Verlag GmbH & Co.. KGaA, 69451 Weinheim, Germany, 2004) [source]


Tuning the Magnetic Properties of a Dinuclear Copper Complex: From Ferromagnetic to Antiferromagnetic Coupling

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2004
Simon P. Foxon
Abstract A novel structural motif in oxalate bridged copper(II) complexes has been prepared namely a metallamacrocyclic compound of the dinucleating ligand 1,3-bis[bis(2-pyridylmethyl)amino]benzene (= 1,3-tpbd). It could be demonstrated that the magnetic properties of copper(II) complexes of the 1,3-tpbd ligand can be adjusted from weakly ferromagnetic (J = +9.3 cm,1) to strongly antiferromagnetic [J = ,366(9) cm,1] by variation of the additional ligands (e.g. perchlorate, azide, oxalate etc.). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Antiferromagnetic Coupling of Stacked CuII,Salen Complexes in DNA,

ANGEWANDTE CHEMIE, Issue 29 2010
Guido
Ein hübsches Pärchen: Die paramagnetischen CuII -Ionen zweier Kupfer-Salen-Metallbasenpaare in benachbarten Positionen in eine DNA-Doppelhelix (siehe Bild) sind antiferromagnetisch gekoppelt, und die Austauschkopplungskonstante ist ,2J=22.4,cm,1. Die dipolare Kopplungskonstante ergab einen Cu,,,Cu-Abstand von 3.7,Å, der dem Basenpaarabstand in natürlicher B-DNA ähnelt. [source]


A Cu,Zn,Cu,Zn Heterometallomacrocycle Shows Significant Antiferromagnetic Coupling Between Paramagnetic Centers Mediated by Diamagnetic Metal.

CHEMINFORM, Issue 1 2006
Elena A. Buvaylo
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Nucleophilic Addition of Water and Alcohols to Dicyanonitrosomethanide: Ligands with Diverse Bonding Modes in Magnetically Coupled d-Block Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 1 2010
Anthony S. R. Chesman
Abstract Ligands resulting from the transition-metal-promoted nucleophilic addition of water or an alcohol to dicyanonitrosomethanide ions (dcnm) have been utilised in the formation of a large series of polynuclear complexes. Addition of water to dcnm results in formation of carbamoylcyanonitrosomethanide (ccnm); deprotonation of this ligand gives amidocarbonyl(cyano)nitrosomethanide (acnm), which has been incorporated into the trinuclear complex [Cu3(acnm)2(dmae)2(H2O)2] [dmae = 2-(dimethylamino)ethoxide] (1) which shows strong antiferromagnetic coupling with an exchange coupling constant, J = ,500 cm,1. [Cu(acnm)(NH3)2], (2) marks the first instance of acnm facilitating the formation of a coordination polymer, namely a 1D chain with intramolecular hydrogen bonding. Attempts to synthesise 2 through different reaction conditions instead resulted in the mononuclear [Cu(acnm)(NH3)2(py)] (py = pyridine) (3). The addition of ethanol to dcnm results in cyano[imino(ethoxy)methyl]nitrosomethanide (cenm) which features in the mononuclear [Cu(cenm)2(H2O)2] (4) and polymeric {[Cu(cenm)2]2·H2O}, (5). The latter is the first example of the cenm ligand in a coordination polymer and has a highly unusual coordination mode through the nitrile groups and extremely weak antiferromagnetic coupling. {[Mn3(ccnm)2(EtOH)2(OAc)4]·2EtOH}, (6) and (Et4N)2[Cu(ccnm)4] (7) contain previously unobserved coordination modes of the ccnm ligand while the complex [Mn(cmnm)3Mn(bipy)(MeOH)](ClO4) (8) {cmnm = cyano[imino(methoxy)methyl]nitrosomethanide, bipy = 2,2,-bipyridine} displays weak antiferromagnetic coupling between manganese atoms with J = ,1.44 cm,1. A change in the solvent systems used in the synthesis of 7 results in the formation of the mononuclear complexes [Mn(bipy)2(dcnm)2] (9) or [Mn(bipy)2(H2O)(dcnm)](dcnm)·H2O (10) and [Mn(bipy)2(dcnm)(H2O)](dcnm) (11). The addition of ethlyene glycol monomethyl ether to dcnm gives cyano[imino(2-methoxyethoxy)methyl]nitrosomethanide (cgnm) and the formation of [Cu(cgnm)2(H2O)2] (12). [source]


Bis(terdentate) Pyrazole/Pyridine Ligands: Synthesis, Crystal Structures and Magnetic Properties of Bridged Binuclear and Tetranuclear Copper(II) Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2009
Akhilesh Kumar Singh
Abstract A new binucleating bis(terdentate) ligand, 3,5-[3-bis(2-pyridyl)pyrazole-1-ylmethyl]pyrazole (HL2), was synthesized. Reaction of the deprotonated ligand L2 with hydrated CuII salts gives (,-pyrazolato)(,-hydroxido)-bridged binuclear and tetranuclear complexes [L2Cu2(,-OH)(ClO4)(MeCN)](ClO4) (2), [L2Cu2(dmf)2(,3 -OH)]2(ClO4)4·4dmf (3·4dmf) and [L2L,Cu2](ClO4)2 [4; HL, = 3-(2-pyridyl)pyrazole]. In these complexes, both ,-OH and ,3 -OH bridges were observed. This contrasts the situation for a dicopper(II) complex of the related bis(terdentate) ligand 3,5-bis[6(2,2,-dipyridyl)]pyrazole (HL1), {L1Cu2(OMe)(MeOH)[,1 - O -(NO3)]}{[Cu2(NO3)2(,-OMe)2]}0.5·MeOH (1·MeOH), where the shorter and more rigid ligand side arms enforce a larger Cu···Cu separation and the formation of a MeO,HOMe moiety within the bimetallic pocket. Molecular structures of all complexes were elucidated by X-ray crystallography. Variable-temperature magnetic susceptibility measurements (295,2 K) for powdered samples of complexes 2,4 reveal strong antiferromagnetic coupling between two copper centres. The magnitude of the coupling is discussed in view of the structural features. During the preparation of complex 4, partial ligand hydrolysis was also observed, but this strongly depends on the reaction conditions.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Synthesis, Structural, Thermal and Magnetic Characterization of a Pyrophosphato-Bridged Cobalt(II) Complex

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2008
Oluwatayo F. Ikotun
Abstract The reaction in water of CoII sulfate heptahydrate with 1,10-phenanthroline (phen) and sodium pyrophosphate (Na4P2O7) in a 2:4:1 stoichiometric ratio resulted in the crystallization of a neutral dinuclear CoII complex, {[Co(phen)2]2(,-P2O7)}·6MeOH (1), as revealed by a single-crystal X-ray diffraction study. The bridging pyrophosphato ligand between the two [Co(phen)2]2+ units in a bis(bidentate) coordination mode places the adjacent metal centers at 4.857 Å distance, and its conformation gives rise to intramolecular ,,, stacking interaction between adjacent phen ligands. Indeed, intermolecular ,,, stacking interactions between phen ligands from adjacent dinuclear complexes create a supramolecular 2D network in 1. Magnetic susceptibility measurements on a polycrystalline sample of 1 in the temperature range 1.9,295 K are typical of an overall antiferromagnetic coupling with a maximum of the magnetic susceptibility at 3.0 K. The analysis of the magnetic data in the whole temperature range allows the determination of the value of the intramolecular magnetic coupling (J = ,1.23 cm,1). The ability of the pyrophosphato ligand to mediate magnetic interactions between different first-row transition-metal ions when adopting the bis(bidentate) bridging mode is analyzed and discussed in the light of the small number of magneto-structural reports on this type of compound, bearing in mind the number of unpaired electrons and type of magnetic orbitals on each metal center. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Nickel Complexes with N2O Donor Ligands: Syntheses, Structures, Catalysis and Magnetic Studies

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 32 2007
Jishnunil Chakraborty
Abstract Two new terephthalato-bridged tetranuclear polymeric NiII complexes, namely [Ni4L41(,-tp-,4 -O)(H2O)2(,-tp-,2 -O)]·2C2H5OH·CH3OH·3H2O (1) and [Ni4L42(,-tp-,4 -O)(H2O)2(,-tp-,2 -O)]·3H2O (2) [L1 = N -(3-aminopropyl)-5-bromosalicylaldimine and L2 = N -(3-aminopropyl)salicylaldimine], are reported along with the syntheses and structures of the dicyanoargentate-bridged polymeric complexes [Ni(L1)(H2O){Ag(CN)2}], (3) and [Ni(L3)(MeOH){Ag(CN)2}], (4) [L3 = N -(3-amino-2,2-dimethylpropyl)-5-bromosalicylaldimine]. All four complexes are found to be effective heterogeneous catalysts for the epoxidation of alkenes such as styrene, ,-methylstyrene and cyclohexene in the presence of tert -butyl hydroperoxide. The variable-temperature magnetic susceptibility measurements (300,2 K) of complex 1 show a fair degree of antiferromagnetic coupling between the NiII centers.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Synthesis, Crystal Structure, and Magnetic Properties of Two Manganese(II) Polymers Bearing Ferrocenecarboxylato Ligands

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2007
Zilu Chen
Abstract Reactions of Mn(ClO4)2·6H2O with FcCO2Na [Fc = (,5 -C5H4)Fe(,5 -C5H5)] in methanol solution gave [Mn3(FcCO2)6(CH3OH)4]n (1), and, in the presence of 4,4,-bipyridine (4,4,-bpy), [Mn3(FcCO2)6(H2O)2(4,4,-bpy)]n (2). Both complexes have the similar chains with a sequence of ,Mn,(,2 -COO)n,Mn,(,2 -COO),Mn,(,2 -COO),Mn,(,2 -COO)n,Mn, (n = 4 and 2 for complex 1 and 2, respectively), which are constructed alternatively from mononuclear [MnII] units and dinuclear [Mn2(FcCO2)4] units by ,2 -ferrocenecarboxylato- O,O, bridging. The two MnII ions in the dinuclear [Mn2(FcCO2)4] units of complex 1 are connected by four ferrocenecarboxylato ligands to form a swastika-like shaped skeleton, which is rare in metallocenecarboxylato complexes. However, the two MnII ions in the dinuclear [Mn2(FcCO2)4] units of complex 2 are bridged only by two carboxylato ligands, and the other two ferrocenecarboxylato ligands in this unit bind in a chelating mode. The chains in complex 2 are further interconnected by the coordinated 4,4,-bipyridine molecules to form two-dimensional coordination sheets. Magnetic susceptibility measurements revealed a weak antiferromagnetic coupling for both complexes. A model Heisenberg chain comprising classical spins coupled through alternating exchange interactions J1,J1,J2 (AF1,AF1,AF2) is proposed to describe the magnetic behavior. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


A Zig-Zag [MnII4] Cluster from a Novel Bis(,-diketonate) Ligand

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2006
Guillem Aromí
Abstract A new ligand, H5L3, has been synthesized featuring seven linearly arranged oxygen donors in form of two 1,3-diketone and three phenol groups. The X-ray structure of H5L3 unveils a rare case where one of the diketones is in the enolic form and the other one in the bis(carbonyl) form. This structure is shown by 1H NMR to persist in solution. Reaction of H5L3 with Mn(AcO)2 in pyridine leads to the novel tetranuclear cluster [Mn4(H2L3)2(OAc)2(py)5] (1), which displays an unusual core in form of a zig-zag chain. Bulk magnetic measurements revealed the existence of weak antiferromagnetic coupling within the molecule. Numerical fits to a model described by the Hamiltonian H = ,2J1(S1S2 + S3S4) , 2J2(S2S3) yield coupling constants of J1 = ,2.23 cm,1, J2 = ,0.85 cm,1 and g = 2.08. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


Dinuclear Complexes of MII Thiocyanate (M = Ni and Cu) Containing a Tridentate Schiff-Base Ligand: Synthesis, Structural Diversity and Magnetic Properties

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 12 2005
Suparna Banerjee
Abstract A dinuclear NiII complex, [Ni2(L)2(H2O)(NCS)2]·3H2O (1) in which the metal atoms are bridged by one water molecule and two ,2 -phenolate ions, and a thiocyanato-bridged dimeric CuII complex, [Cu(L)NCS]2 (2) [L = tridentate Schiff-base ligand, N -(3-aminopropyl)salicylaldimine, derived from 1:1 condensation of salicylaldehyde and 1,3-diaminopropane], have been synthesized and characterized by IR and UV/Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction studies. The structure of 1 consists of dinuclear units with crystallographic C2 symmetry in which each NiII atom is in a distorted octahedral environment. The Ni,O distance and the Ni,O,Ni angle, through the bridged water molecule, are 2.240(11) Å and 82.5(5)°, respectively. The structure of 2 consists of dinuclear units bridged asymmetrically by di-,1,3 -NCS ions; each CuII ion is in a square-pyramidal environment with , = 0.25. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complex 1 with J = 3.1 cm,1, whereas complex 2 exhibits weak antiferromagnetic coupling between the CuII centers with J = ,1.7 cm,1. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Polymeric, Molecular, and Cation/Anion Arrangements in Chloro-, Bromo-, and Iododiruthenium(II,III) Carboxylate Compounds

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 12 2003
M. Carmen Barral
Abstract The synthesis and characterization of the anhydrous compounds [Ru2X(,-O2CR)4] [R = CH2CH2OPh, X = Cl (1a), Br (2a), I (3a); R = CMePh2, X = Br (5a), I (6a)] and of the solvated complexes [Ru2X(,-O2CR)4(H2O)] [R = CH2CH2OPh, X = Cl (1b), I (3b); R = CMePh2, X = Cl (4b), Br (5b), I (6b)] are described. Thermogravimetric analyses have been used to confirm the anhydrous or solvated natures of the complexes. The crystal structures of 1b·2MeOH, 3b·0.5H2O, and 4b have been investigated by X-ray diffraction and none of them shows the usual polymeric arrangement reported for tetracarboxylatodiruthenium(II,III) compounds. The structure of 3b·0.5H2O consists of cationic and anionic units, [Ru2(,-O2CCH2CH2OPh)4(H2O)2][Ru2I2(,-O2CCH2CH2OPh)4], and represents the first reported crystal structure of a tetracarboxylato(iodo)diruthenium(II,III) derivative. The structures 1b·2MeOH and 4b each show the presence of discrete dinuclear molecules. The crystal structure of [Ru2Cl(,-O2CCMePh2)4(H2O)] demonstrates that diruthenium compounds with the same halide and carboxylate ligands may adopt polymeric or discrete molecular dispositions. Magnetic susceptibility measurements of the complexes in the 2,300 K range have been carried out. Complex 2a shows a strong antiferromagnetic coupling, consistent with the existence of linear chains in the solid state. The complexes [Ru2X(,-O2CR)4(H2O)] show weak through-space antiferromagnetic coupling, in accordance with non-polymeric structures. The magnetic behaviour of 1a, 3a, 5a, and 6a suggests a mixture of arrangements. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Exchange Interactions at the Supramolecular Level , Synthesis, Crystal Structure, Magnetic Properties, and EPR Spectra of [Mn(MAC)(TCNQ)2] (MAC = Pentaaza Macrocyclic Ligand; TCNQ·, = Radical Anion of 7,7,8,8-Tetracyano- p -quinodimethane)

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2003
Augustin M. Madalan
Abstract The reaction between [Mn(MAC)(H2O)2]Cl2·4H2O and LiTCNQ (MAC = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene) affords a complex with the formula [Mn(MAC)(TCNQ)2] (1), whose crystal structure has been determined. Its structure consists of neutral mononuclear entities. The manganese(II) ion is heptacoordinated, with a pentagonal bipyramidal geometry. The apical positions are occupied by the TCNQ·, radicals, while the macrocyclic ligand is coordinated at the equatorial positions. The seven Mn,N distances range from 2.273(3) to 2.301(6) Å. The strong intermolecular ,,, stacking interactions between the TCNQ radicals (3.2 Å) leads to weave-like infinite chains, which propagate along the crystallographic c axis. The cryomagnetic investigation of 1 revealed a weak intermolecular antiferromagnetic coupling of the Mn2+ ions (J = ,0.18 cm,1), which is mediated by the diamagnetic (TCNQ)22, pairs resulting from the stacking interactions in the crystal. The intermolecular exchange interaction between the Mn2+ ions was further confirmed by variable temperature EPR spectroscopic measurements [|J| = 0.15(5) cm,1], which have been carried out in both the X and Q bands. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Crystal Structures and Magnetic Properties of Nitronyl Nitroxide Radicals

HELVETICA CHIMICA ACTA, Issue 4 2003
Alexander Zakrassov
The crystal structures and magnetic properties of the nitronyl nitroxide radicals 4,5-dihydro-4,4,5,5-tetramethyl-3-oxido(1H -imidazol-1-yloxyl) (1), 4,5-dihydro-2,4,4,5,5-pentamethyl-3-oxido(1H -imidazol-1-yloxyl) (2), 2-(4-chlorophenyl)-4,5-dihydro-4,4,5,5-tetramethyl-3-oxido(1H -imidazol-1-yloxyl) (3), and 4,5-dihydro-2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-3-oxido(1H -imidazol-1-yloxyl) (4) are reported. Compound 1 has two polymorphic forms: the , phase is monoclinic (P21/n space group), with a single molecule in the asymmetric unit, and the , phase is monoclinic (P21/c space group), with four molecules in the asymmetric unit. In the two polymorphs, the molecules are arranged in dimers formed by hydrogen bonds of the type CH,,,ON. The crystal structure of 3 contains layers of antiparallel ribbons of molecules. Compound 4 crystallizes with solvent molecules, and an intramolecular hydrogen bond is formed between the 2-OH group of the phenyl ring and the nitroxide O-atom. Compound 4 also loses the two O-atoms of the nitroxide moiety upon heating to 90°. Magnetic measurements showed that both , and , polymorphs of 1 exhibit antiferromagnetic coupling. The best fit to the experimental data was obtained using BleanyBower's singlet-triplet model (H=,2JSaSb): J=,11.2,K for the , phase and J=,15.0,K for the , phase. Compounds 3 and 4 show no evidence for spin coupling. [source]


Theory of chemical bonds in metalloenzymes.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2008

Abstract A first principle investigation has been carried out for intermediate states of the catalytic cycle of a cytochrome P450. To elucidate the whole catalytic cycle of P450, the electronic and geometrical structures are investigated not only at each ground state but also at low-lying energy levels. Using the natural orbital analysis, the nature of chemical bonds and magnetic interactions are investigated. The ground state of the Compound 1 (cpd1) is calculated to be a doublet state, which is generated by the antiferromagnetic coupling between a triplet Fe(IV)O moiety and a doublet ligand radical. We found that an excited doublet state of the cpd1 is composed of a singlet Fe(IV)O and a doublet ligand radical. This excited state lies 20.8 kcal mol,1 above the ground spin state, which is a non-negligible energy level as compared with the activation energy barrier of ,E# = 26.6 kcal mol,1. The reaction path of the ground state of cpd1 is investigated on the basis of the model reaction: 3O(3p) + CH4. The computational results suggest that the reactions of P450 at the ground and excited states proceed through abstraction (3O-model) and insertion (1O-model) mechanisms, respectively. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source]


Electronic structure and magnetic properties of Fe3C with 3d and 4d impurities

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 6 2007
I. R. Shein
Abstract We study the electronic structure, formation energies, and magnetic properties of cementite Fe3C doped by 3d and 4d transition metals (TM) by means of first-principles calculations. All TM elements demonstrate a preference for the substitution of the general iron position in Fe3C. We predict that early elements (Sc, Ti, V, Cr, Zr, and Nb) stabilize the cementite, while the end elements (Ni, Cu, Pd, and Ag) in the TM series sharply destabilize it. The magnetic properties of impurity atoms are found to depend strongly on their atomic numbers and the trends to ferromagnetic or antiferromagnetic coupling of impurities with Fe atoms in Fe3C coincide with the magnetic behavior of these impurities in Fe. The physical reason is a similar location of the Fermi level in the pseudogap of spin-down and almost filled spin-up Fed states in both Fe3C and Fe. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Co2MnSi as full Heusler alloy ferromagnetic electrode in magnetic tunneling junctions

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 5 2006
G. Reiss
Abstract The discoveries of antiferromagnetic coupling in Fe/Cr multilayers by Grünberg, the Giant MagnetoResistance by Fert and Grünberg and a large tunneling magnetoresistance at room temperature by Moodera have triggered enormous research on magnetic thin films and magnetoelectronic devices. Large opportunities are especially opened by the spin dependent tunneling resistance, where a strong dependence of the tunneling current on an external magnetic field can be found. In order to obtain large magnetoresistance effects, materials with strongly spin polarized electron gas around the Fermi level have to be found. New materials with potentially 100% spin polarization will be discussed using the example of the full Heusler compound Co2MnSi. First, experimental aspects of the integration of this alloy in magnetic tunneling junctions will be addressed. With these junctions, we obtain up to 100% TMR at low temperature. The current status of this research will then be summarized with special regard to the complex diffusion mechanisms occurring in these devices and to the properties of the interfaces between the Heusler material and the insulator. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A Ladder-like One-dimensional Chain Based on a New Biradical and CuII: Crystal Structure and Magnetic Properties,

CHINESE JOURNAL OF CHEMISTRY, Issue 9 2010
Chao Wang
Abstract A new biradical di(4-(1,-oxyl-3,-oxido-4,,4,,5,,5,-tetramethyl-4,,5,-dihydro-1,H -imidazol-2,-yl)phenyl) ether (1) and its copper complex 2 were synthesized and characterized structurally. The X-ray structure determination revealed that, the complex is in the triclinic P -1 space group and displays a ladder-like structure. Each copper atom is surrounded by four oxygen atoms from hexafluoroacetylacetone and two oxygen atoms from biradical. The magnetic measurements show that biradical 1 exhibits a weak intramolecular nitroxide-nitroxide antiferromagnetic coupling and copper complex 2 possesses weak ferromagnetic coupling (J=5.09 cm,1) between CuII and radical, which attributed to interaction between copper spin and the axially coordinated nitronyl nitroxide spin. [source]


A Terephthalato-Bridged NiII Complex Capped with a Nonchelating Ligand Displays a Three-Dimensional Supramolecular Network Constructed by Coordination and Multi-Intermolecular Forces

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2005
Chang Seop Hong
Abstract A new tp-bridged complex [Ni(pyrazole)4(tp)]n (1; tp = terephthalate) coordinated with a nonchelating pyrazole ligand has been synthesized and characterized using X-ray structure determination and magnetic studies. The crystal structure reveals that the capping ligand functions as a source of hydrogen bonding and intermolecular contacts, such as ,,, and CH,, interactions, that result in a three-dimensional supramolecular assembly. Weak antiferromagnetic couplings are transmitted between NiII centers through the tp linkage. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]