Home About us Contact | |||
Antibiotic Effect (antibiotic + effect)
Selected Abstracts7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic targetFEBS JOURNAL, Issue 20 2006Characterization, inhibition studies Diaminopelargonic acid aminotransferase (DAPA AT), which is involved in biotin biosynthesis, catalyzes the transamination of 8-amino-7-oxononanoic acid (KAPA) using S -adenosyl- l -methionine (AdoMet) as amino donor. Mycobacterium tuberculosis DAPA AT, a potential therapeutic target, has been overproduced in Escherichia coli and purified to homogeneity using a single efficient step on a nickel-affinity column. The enzyme shows an electronic absorption spectrum typical of pyridoxal 5,-phosphate-dependent enzymes and behaves as a homotetramer in solution. The pH profile of the activity at saturation shows a single ionization group with a pKa of 8.0, which was attributed to the active-site lysine residue. The enzyme shows a Ping Pong Bi Bi kinetic mechanism with strong substrate inhibition with the following parameters: KmAdoMet = 0.78 ± 0.20 mm, KmKAPA = 3.8 ± 1.0 µm, kcat = 1.0 ± 0.2 min,1, KiKAPA = 14 ± 2 µm. Amiclenomycin and a new analogue, 4-(4c -aminocyclohexa-2,5-dien-1r -yl)propanol (referred to as compound 1), were shown to be suicide substrates of this enzyme, with the following inactivation parameters: Ki = 12 ± 2 µm, kinact = 0.35 ± 0.05 min,1, and Ki = 20 ± 2 µm, kinact = 0.56 ± 0.05 min,1, for amiclenomycin and compound 1, respectively. The inactivation was irreversible, and the partition ratios were 1.0 and 1.1 for amiclenomycin and compound 1, respectively, which make these inactivators particularly efficient. compound 1 (100 µg·mL,1) completely inhibited the growth of an E. coli C268bioA mutant strain transformed with a plasmid expressing the M. tuberculosis bioA gene, coding for DAPA AT. Reversal of the antibiotic effect was observed on the addition of biotin or DAPA. Thus, compound 1 specifically targets DAPA AT in vivo. [source] Elution kinetics, antimicrobial efficacy, and degradation and microvasculature of a new gentamicin-loaded collagen fleeceJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2009Olaf Kilian Abstract Management of bone and soft tissue infections generally includes surgical procedures as well as attendant treatment and prevention with gentamicin-loaded fleeces. Conventional gentamicin-containing collagen fleeces currently in use are strongly acidic and exhibit limited biocompatibility thereby adversely affecting wound healing. To improve the antibiotic delivery system, a new phosphate-buffered, gentamicin-loaded fleece with pH,neutral properties has been developed (Jason G®). This study aimed at comparing the elution kinetics of gentamicin release and the antimicrobial efficacy of conventional fleeces with the newly developed fleece in vitro. In addition, degradation and microvasculature of implanted fleeces were examined in a rat model and assessed using histology, as well as detection of ED-1 and PECAM-expression using immunohistochemistry. We show that the phosphate-buffered fleeces have reduced release (p < 0.05) of the integrated gentamicin. However, all of the fleeces tested had a significant antimicrobial effect on the growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains (p < 0.01). Among the fleeces tested, the new Jason G® fleece had the weakest but nevertheless sufficient antimicrobial effectiveness. Evaluation of the antibiotic effect in the prevention of an infection showed no differences between the applied fleeces. Following surgical implantation of fleece in the backs of Wistar rats we observed, on day 5 after implantation, an increase in cell infiltration and microvascularization with the phosphate-buffered fleece as compared with conventional fleeces, which show necrotic cells on their surface. Unlike the acidic fleeces, on day 15 after implantation the pH,neutral fleece was resorbed widely. Here, we show that the new, pH,neutral, gentamicin-containing fleece Jason G® exhibits good overall antimicrobial effectiveness against both gram-positive and gram-negative bacteria in vitro with improved degradation properties and microvasculature formation in vivo. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009 [source] HP(2,9)-magainin 2(1,12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membraneJOURNAL OF PEPTIDE SCIENCE, Issue 4 2004Yoonkyung Park Abstract In our previous study, HP(2,9)-MA(1,12), HP-MA for short, a hybrid peptide incorporating residues 2,9 of Helicobacter pylori ribosomal protein L1 (HP) and residues 1,12 of magainin 2 (MA) was shown to have strong antibacterial activity. In this study the antifungal activity of HP-MA was evaluated using various fungi, and it was shown that the activity was increased when compared with the parent peptides. In order to investigate the fungicidal mechanism(s) of HP-MA its action against fungal cell membranes was examined by the potassium-release test, which showed that HP-MA caused an increase in the amount of K+ released from the cells. Furthermore, HP-MA induced significant morphological changes. These facts suggested that the fungicidal effect of HP-MA involves damaging the fungal cell membranes. CD investigators suggested that the ,-helical structure of these peptides plays an important role in their antibiotic effect, but that ,-helicity is less directly correlated with the enhanced antibiotic activity of the hybrid. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source] Pharmaceutical antibiotic compounds in soils , a reviewJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2003Sören Thiele-Bruhn Antibiotics are highly effective, bioactive substances. As a result of their consumption, excretion, and persistence, they are disseminated mostly via excrements and enter the soils and other environmental compartments. Resulting residual concentrations in soils range from a few ,g upto g kg,1 and correspond to those found for pesticides. Numerous antibiotic molecules comprise of a non-polar core combined with polar functional moieties. Many antibiotics are amphiphilic or amphoteric and ionize. However, physicochemical properties vary widely among compounds from the various structural classes. Existing analytical methods for environmental samples often combine an extraction with acidic buffered solvents and the use of LC-MS for determination. In soils, adsorption of antibiotics to the organic and mineral exchange sites is mostly due to charge transfer and ion interactions and not to hydrophobic partitioning. Sorption is strongly influenced by the pH of the medium and governs the mobility and transport of the antibiotics. In particular for the strongly adsorbed antibiotics, fast leaching through soils by macropore or preferential transport facilitated by dissolved soil colloids seems to be the major transport process. Antibiotics of numerous classes are photodegraded. However, on soil surfaces this process if of minor influence. Compared to this, biotransformation yields a more effective degradation and inactivation of antibiotics. However, some metabolites still comprise of an antibiotic potency. Degradation of antibiotics is hampered by fixation to the soil matrix; persisting antibiotics were already determined in soils. Effects on soil organisms are very diverse, although all antibiotics are highly bioactive. The absence of effects might in parts be due to a lack of suitable test methods. However, dose and persistence time related effects especially on soil microorganisms are often observed that might cause shifts of the microbial community. Significant effects on soil fauna were only determined for anthelmintics. Due to the antibiotic effect, resistance in soil microorganisms can be provoked by antibiotics. Additionally, the administration of antibiotics mostly causes the formation of resistant microorganisms within the treated body. Hence, resistant microorganisms reach directly the soils with contaminated excrements. When pathogens are resistant or acquire resistance from commensal microorganisms via gene transfer, humans and animals are endangered to suffer from infections that cannot be treated with pharmacotherapy. The uptake into plants even of mobile antibiotics is small. However, effects on plant growth were determined for some species and antibiotics. Pharmazeutische Antibiotika in Böden , ein Überblick Antibiotika sind hochgradig wirksame, bioaktive Substanzen. Infolge ihrer Anwendung, Ausscheidung und Persistenz werden sie meist über die Exkremente in Böden und andere Umweltkompartimente eingetragen. Die resultierenden Rückstandskonzentrationen in Böden im Bereich von wenigen ,g bis zu g kg,1 entsprechen in etwa denen von Pflanzenschutzmitteln. Die Molekülstruktur von Antibiotika besteht häufig aus einem unpolaren Kern und polaren Randgruppen. Viele Antibiotika sind amphiphil oder amphoter und bilden Ionen, jedoch weisen die zahlreichen Antibiotika unterschiedlicher Strukturklassen stark divergierende physikochemische Eigenschaften auf. In den vorliegenden Nachweis"methoden für Umweltproben werden häufig sauer gepufferte Lösungsmittel zur Extraktion und eine Bestimmung mittels LC-MS kombiniert. Die Adsorption der Antibiotika an den organischen als auch an den mineralischen Bodenaustauschern erfolgt zumeist durch Ladungs- und Ionenwechselwirkungen und weniger durch hydrophobe Bindungen. Das Verteilungsverhalten hängt dabei entscheidend vom pH-Wert des Mediums ab und beeinflusst die Mobilität und Verlagerung der Antibiotika. Bei vielen, insbesondere stark adsorbierten Antibiotika sind v.,a. schnelle Fließvorgänge wie durch präferenziellen und Makroporenfluss sowie der Cotransport mit gelösten Bodenkolloiden von besonderer Bedeutung. Antibiotika vieler Strukturklassen können durch Licht abgebaut werden. Dieser Abbaupfad spielt auf Bodenoberflächen jedoch nur eine untergeordnete Rolle. Hingegen kommt es insbesondere durch biologische Transformationsprozesse zu einer intensiven Degradation und Inaktivierung der Antibiotika. Verschiedene Metaboliten weisen jedoch ebenfalls ein antibiotisches Potential auf. Der Abbau der Antibiotika wird durch die Festlegung in Böden gehemmt; dementsprechend wurde eine Persistenz verschiedener Antibiotika nachgewiesen. Trotz der starken bioaktiven Wirkung aller Antibiotika sind die festgestellten Effekte auf Bodenorganismen sehr unterschiedlich. Dies liegt nicht zuletzt an einem Mangel an geeigneten Testmethoden. In der Regel sind jedoch von Dosis und Wirkungsdauer abhängige Effekte insbesondere auf Mikroorganismen festzustellen, die zu Veränderungen der Mikroorganismenpopulation führen können. Lediglich durch Anthelmintika wurden deutliche Wirkungen auf Vertreter der Bodenfauna hervorgerufen. Infolge der antibiotischen Wirkung der Pharmazeutika kann eine Resistenzbildung bei Bodenorganismen ausgelöst werden. Zudem hat die Medikation von Antibiotika die Bildung resistenter Mikroorganismen bereits im behandelten Organismus zur Folge. Durch deren anschließende Ausscheidung gelangen resistente Keime auch direkt in die Böden. Handelt es sich um resistente Pathogene oder kommt es zur Übertragung der Resistenzgene zwischen kommensalen und pathogenen Mikroorganismen, so besteht das erhebliche Risiko einer nicht therapierbaren Infektion von Mensch und Tier. Die Aufnahme selbst mobiler Antibiotika in die Pflanzen ist sehr gering. Dennoch wurden bei einigen Pflanzenarten Wirkungen von Antibiotika auf das Wachstum nachgewiesen. [source] Conformation and lytic activity of eumenine mastoparan: a new antimicrobial peptide from wasp venomCHEMICAL BIOLOGY & DRUG DESIGN, Issue 3 2004M.P. Dos Santos Cabrera Abstract:, Eumenine mastoparan-AF (EMP-AF) is a novel membrane active tetradecapeptide recently isolated from the venom of solitary wasp, Anterhynchium flavomarginatum micado. It was reported previously that EMP-AF peptide presented low cytolytic activities in human erythrocytes and in RBL-2H3 mast cells. In the present work, we observed that this peptide is able to permeate anionic liposomes, and in less extension also the neutral ones. We present evidences showing that the permeation ability is well correlated with the amount of helical conformation assumed by the peptides in these environments. This peptide also showed a broad-spectrum inhibitory activity against Gram-positive and Gram-negative bacteria. The permeability of liposomes and the antibiotic effect showed a significant reduction when C-terminus was deamidated (in acidic form). The removal of the three first amino acid residues from the N-terminus rendered the peptide inactive both in liposomes and in bacteria. The results suggest that the mechanism of action involves a threshold in the accumulation of the peptide at level of cell membrane. [source] |