Home About us Contact | |||
Antiandrogen Treatment (antiandrogen + treatment)
Selected AbstractsMolecular basis for the antiandrogen withdrawal syndromeJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2004Hiroshi Miyamoto Abstract In patients with prostate cancer who manifest disease progression during combined androgen blockade therapy, discontinuation of antiandrogen treatment might result in prostate-specific antigen decline, often associated with clinical improvement. The response called antiandrogen withdrawal syndrome is thus acknowledged as a general phenomenon. However, molecular mechanisms responsible for this syndrome are not completely understood. This article outlines the proposed mechanisms, including alterations of androgen receptor gene and its coregulatory proteins and activation of the signal transduction pathway, and the potential therapeutic approaches based on the specific mechanisms. © 2003 Wiley-Liss, Inc. [source] Short-Term Antiandrogen Flutamide Treatment Causes Structural Alterations in Somatic Cells Associated with Premature Detachment of Spermatids in the Testis of Pubertal and Adult Guinea PigsREPRODUCTION IN DOMESTIC ANIMALS, Issue 3 2010LR Maschio Contents In spite of widespread application of flutamide in the endocrine therapies of young and adult patients, the side effects of this antiandrogen on spermatogenesis and germ-cell morphology remain unclear. This study evaluates the short-term androgen blockage effect induced by the administration of flutamide to the testes of pubertal (30-day old) and adult (65- and 135-day old) guinea pigs, with an emphasis on ultrastructural alterations of main cell types. The testes removed after 10 days of treatment with either a non-steroidal antiandrogen, flutamide (10 mg/kg of body weight) or a pharmacological vehicle alone were processed for histological, quantitative and ultrastructural analysis. In pubertal animals, flutamide androgenic blockage induces spermatogonial differentiation and accelerates testes maturation, causing degeneration and detachment of primary spermatocytes and round spermatids, which are subsequently found in great quantities in the epididymis caput. In post-pubertal and adult guinea pigs, in addition to causing germ-cell degeneration, especially in primary spermatocytes, and leading to the premature detachment of spherical spermatids, the antiandrogen treatment increased the relative volume of Leydig cells. In addition, ultrastructural evaluation indicated that irrespective of age antiandrogen treatment causes an increase in frequency of organelles involved with steroid hormone synthesis in the Leydig cells and a dramatic accumulation of myelin figures in their cytoplasm and, to a larger degree, in Sertoli cells. In conclusion, the transient exposition of the guinea pigs to flutamide, at all postnatal ages causes some degenerative lesions including severe premature detachment of spermatids and accumulation of myelin bodies in Leydig and Sertoli cells, compromising, at least temporarily, the spermatogenesis. [source] The use of flutamide as a single antiandrogen treatment for hormone-refractory prostate cancerBJU INTERNATIONAL, Issue 4 2004D. Fawcett No abstract is available for this article. [source] |