Anthropogenic Forcing (anthropogenic + forcing)

Distribution by Scientific Domains


Selected Abstracts


Dealing with Landscape Heterogeneity in Watershed Hydrology: A Review of Recent Progress toward New Hydrological Theory

GEOGRAPHY COMPASS (ELECTRONIC), Issue 1 2009
Peter A. Troch
Predictions of hydrologic system response to natural and anthropogenic forcing are highly uncertain due to the heterogeneity of the land surface and subsurface. Landscape heterogeneity results in spatiotemporal variability of hydrological states and fluxes, scale-dependent flow and transport properties, and incomplete process understanding. Recent community activities, such as Prediction in Ungauged Basins of International Association of Hydrological Sciences, have recognized the impasse current catchment hydrology is facing and have called for a focused research agenda toward new hydrological theory at the watershed scale. This new hydrological theory should recognize the dominant control of landscape heterogeneity on hydrological processes, should explore novel ways to account for its effect at the watershed scale, and should build on an interdisciplinary understanding of how feedback mechanisms between hydrology, biogeochemistry, pedology, geomorphology, and ecology affect catchment evolution and functioning. [source]


Early 20th century Arctic warming in retrospect

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2010
Kevin R. Wood
Abstract The major early 20th century climatic fluctuation (,1920,1940) has been the subject of scientific enquiry from the time it was detected in the 1920s. The papers of scientists who studied the event first-hand have faded into obscurity but their insights are relevant today. We review this event through a rediscovery of early research and new assessments of the instrumental record. Much of the inter-annual to decadal scale variability in surface air temperature (SAT) anomaly patterns and related ecosystem effects in the Arctic and elsewhere can be attributed to the superposition of leading modes of variability in the atmospheric circulation. Meridional circulation patterns were an important factor in the high latitudes of the North Atlantic during the early climatic fluctuation. Sea surface temperature (SST) anomalies that appeared during this period were congruent with low-frequency variability in the climate system but were themselves most likely the result of anomalous forcing by the atmosphere. The high-resolution data necessary to verify this hypothesis are lacking, but the consistency of multiple lines of evidence provides strong support. Our findings indicate that early climatic fluctuation is best interpreted as a large but random climate excursion imposed on top of the steadily rising global mean temperature associated with anthropogenic forcing. Copyright © 2009 Royal Meteorological Society [source]


Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 2 2010
David B. Enfield
Abstract Analysis of recent literature finds weaknesses in arguments to the effect that the Atlantic multidecadal oscillation (AMO),roughly 50,90 year fluctuations in North Atlantic sea surface temperatures,is externally forced by anthropogenic aerosols and greenhouse gases rather than an internal climate mode, plus indications from other sources that the contrary may be true. We are led to the conclusion that the AMO is probably comprised of both natural and anthropogenic forcing in ways that preclude a physically based separation of the two, using the limited historical data sets. A straightforward quadratic fitting of trend to temperature data accounts for some of the 20th century nonlinearity in secular warming and separates the secular and multidecadal components of variability without inherent assumptions about the nature of the multidecadal fluctuations. Doing this shows that the 20th century secular ocean warming in the North Atlantic is about equal to the peak-to-peak amplitude of the multidecadal fluctuations. However, over the last quarter-century (1975,2000) the most recent multidecadal warming has been almost three times the secular sea surface temperature (SST) increase over the main development region (MDR) for major Atlantic hurricanes. In the last quarter-century the multidecadal increase in late summer Atlantic warm pool (AWP) size (area of SSTs in excess of 28 °C) has been 36%, and the secular increase, 14%. Projections to the year 2025 show that the cumulative change in summer warm pool size since 1975 will depend critically on whether a subsequent cooling in the multidecadal cycle occurs, comparable to the warming between 1975 and 2000 AD. This places a high premium on understanding to what extent the AMO is a man-made or a natural phenomenon. Copyright © 2009 Royal Meteorological Society [source]


A simulated reduction in Antarctic sea-ice area since 1750: implications of the long memory of the ocean

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2005
Hugues Goosse
Abstract Using the three-dimensional coarse-resolution climate model ECBILT-CLIO, 1000-year long ensemble simulations with natural and anthropogenic forcings have been performed to study the long-term variation of the ice cover in the Southern Ocean. Over the last 250 years, the ice area has decreased by about 1 × 106 km2 in its annual mean. A comparison with experiments driven by only natural forcings suggests that this reduction is due to both natural and anthropogenic forcing, the latter playing a larger role than natural forcing over the last 150 years. Despite this contribution from anthropogenic forcing, the simulated ice area at the end of the 20th century is similar to that simulated during the 14th century because of the slow response of the Southern Ocean to radiative forcing. Sensitivity experiments performed with the model show that the model's initial conditions have a large influence on the simulated ice cover and that it is necessary to start simulations at least two centuries before the period of interest in order to remove this influence. Copyright © 2005 Royal Meteorological Society. [source]


Transient climate simulation forced by natural and anthropogenic climate forcings

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2002
Cédric Bertrand
Abstract Numerical experiments have been carried out with a two-dimensional sector-averaged global climate model coupled to a diffusive ocean in order to assess the potential impact of four hypothesized mechanisms of decadal to century-scale climate variability, both natural and anthropogenically induced: (1) solar variability; (2) variability in volcanic aerosol loading of the atmosphere; (3) anthropogenic increase of sulphate aerosols' concentration; (4) anthropogenic increase of greenhouse gas concentrations. Our results suggest that neither the individual responses nor the combined natural or anthropogenic forcings allow one to reproduce all of the recorded major temperature fluctuations since the latter half of the 19th century. They show that these temperature variations are the result of both naturally driven climate fluctuations and the effects of industrialization. By contrast, the dominant cause of decade-to-century-scale variability of the 21st century is likely to be changes in atmospheric trace-gas concentrations. Indeed, when the solar, volcanic, and tropospheric aerosols forcings used in our experiments are extended into the future, they are unable to counter the expected greenhouse warming. Copyright © 2002 Royal Meteorological Society. [source]


Ascribing potential causes of recent trends in free atmosphere temperatures

ATMOSPHERIC SCIENCE LETTERS, Issue 1-4 2001
P. W. Thorne
Abstract We use globally gridded radiosonde temperature datasets in a simple climate change study. Two climate models, when run with historical and, particularly, anthropogenic forcings, exhibit a degree of agreement with radiosonde temperature observations for 1958,1998. Copyright © 2002 British Crown Copyright. [source]