Anterior Pituitary (anterior + pituitary)

Distribution by Scientific Domains

Terms modified by Anterior Pituitary

  • anterior pituitary cell
  • anterior pituitary gland

  • Selected Abstracts


    Increased Caloric Intake on a Fat-Rich Diet: Role of Ovarian Steroids and Galanin in the Medial Preoptic and Paraventricular Nuclei and Anterior Pituitary of Female Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2007
    S. F. Leibowitz
    Previous studies in male rats have demonstrated that the orexigenic peptide galanin (GAL), in neurones of the anterior parvocellular region of the paraventricular nucleus (aPVN) projecting to the median eminence (ME), is stimulated by consumption of a high-fat diet and may have a role in the hyperphagia induced by fat. In addition to confirming this relationship in female rats and distinguishing the aPVN-ME from other hypothalamic areas, the present study identified two additional extra-hypothalamic sites where GAL is stimulated by dietary fat in females but not males. These sites were the medial preoptic nucleus (MPN), located immediately rostral to the aPVN, and the anterior pituitary (AP). The involvement of ovarian steroids, oestradiol (E2) and progesterone (PROG), in this phenomenon was suggested by an observed increase in circulating levels of these hormones and GAL in MPN and AP with fat consumption and an attenuation of this effect on GAL in ovariectomised (OVX) rats. Furthermore, in the same four areas affected by dietary fat, levels of GAL mRNA and peptide immunoreactivity were stimulated by E2 and further by PROG replacement in E2 -primed OVX rats and were higher in females compared to males. Because both GAL and PROG stimulate feeding, their increase on a fat-rich diet may have functional consequences in females, possibly contributing to the increased caloric intake induced by dietary fat. This is supported by the findings that PROG administration in E2 -primed OVX rats reverses the inhibitory effect of E2 on total caloric intake while increasing voluntary fat ingestion, and that female rats with higher GAL exhibit increased preference for fat compared to males. Thus, ovarian steroids may function together with GAL in a neurocircuit, involving the MPN, aPVN, ME and AP, which coordinate feeding behaviour with reproductive function to promote consumption of a fat-rich diet at times of increased energy demand. [source]


    Dual Excitatory and Inhibitory Effects of Stimulation of Intrinsic Innervation of the Anterior Pituitary on Adrenocorticotropic Hormone Release in the Rat

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2004
    L.-Z. Gao
    Abstract The gland cells of the mammalian anterior pituitary are innervated by substantial amounts of nerve fibres, and there is evidence that the nerve fibres are functionally active. In the rat, the nerve fibres make typical excitatory synapses with corticotropes. The physiological significance of this synaptic relationship was investigated in the present study. The anterior pituitary of the rat was sliced and stimulated with electrical field in a chamber. The perfusate was continuously collected and immunoradioassayed for adrenocorticotropic hormone (ACTH). When the gland slices were stimulated at a high frequency of 10 Hz, there was a significant inhibition of ACTH secretion. Stimulation at a low frequency of 2 Hz resulted in a quick and transient excitation of ACTH release. The results indicate that stimulation of the nerve fibres in the anterior pituitary has dual excitatory and inhibitory effects on ACTH secretion. [source]


    Ontogeny of Plurihormonal Cells in the Anterior Pituitary of the Mouse, as Studied by Means of Hormone mRNA Detection in Single Cells

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2002
    E. Seuntjens
    Abstract The expression of mRNA of growth hormone (GH), prolactin (PRL), pro-opiomelanocortin (POMC) and the common glycoprotein hormone ,-subunit (,GSU) was studied by means of single cell reverse transcriptase-polymerase chain reaction in male mouse pituitary cells at key time points of fetal and postnatal development: embryonic day 16 (E16); postnatal day 1 (P1) and young-adult age (P38). At E16, the hormone mRNAs examined were detectable, although only in 44% of total cells. Most of the hormone-positive cells expressed only one of the tested hormone mRNAs (monohormonal) but 14% of them contained more than one hormone mRNA (plurihormonal cells). Combinations of GH mRNA with PRL mRNA, of ,GSU mRNA with GH and/or PRL mRNA and of POMC mRNA with GH and/or PRL mRNA or ,GSU mRNA were found. As expected, the proportion of hormone-positive cells rose as the mouse aged. The proportions of plurihormonal cells followed a developmental pattern independent of that of monohormonal cells and characteristic for each hormone mRNA examined. Cells coexpressing POMC mRNA with GH or PRL mRNA significantly rose in proportion between E16 and P1, while the proportion of cells coexpressing GH and PRL mRNA markedly increased between P1 and P38. The occurrence of cells displaying combined expression of ,GSU mRNA with GH and/or PRL mRNA did not significantly change during development. Remarkably, the population of cells expressing PRL mRNA only, was larger at E16 than at P1 and expanded again thereafter. In conclusion, the normal mouse pituitary develops a cell population that is capable of expressing multiple hormone mRNAs, thereby combining typical phenotypes of different cell lineages. These plurihormonal cells are already present during embryonic life. This population is of potential physiological relevance because development-related factors appear to determine which hormone mRNAs are preferentially coexpressed. Coexpression of multiple hormone mRNAs may represent a mechanism to respond to temporally increased endocrine demands. The data also suggest that the control of combined hormone expression is different from that of single hormone expression, raising questions about the current view on pituitary cell lineage specifications. [source]


    Influences of the environment on the endocrine and paracrine fish growth hormone,insulin-like growth factor-I system

    JOURNAL OF FISH BIOLOGY, Issue 6 2010
    M. Reinecke
    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine,paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish ,GH,IGF-I axis'. The GH,IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH,IGF-I research are analysed and future focuses are suggested at the end of the sections. [source]


    Theoretical Consequences of Fluctuating Versus Constant Liganding of Oestrogen Receptor-, in Neurones

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2010
    D. W. Pfaff
    A theory is put forward that emphasises differences in neuronal responses to fluctuations in steroid hormone levels compared to constant hormone levels. We propose that neuronal functions that regulate gonadotrophin release from the anterior pituitary tend to be more sensitive to rapid increases in the levels of oestrogens than they are to constant oestrogen levels. By contrast, neurones that control certain behavioral functions are affected just as well by constant oestrogen levels as by positively accelerating levels of oestrogen. In addition to providing examples of data from recent experiments that examine actions of the long-term effects of oestrogen on mouse behaviour, we illustrate the behavioural effects of microinjections of adeno-associated viral vectors of small interfering RNA directed against the mRNA for oestrogen receptor-, (ER,). This manipulation provides for a long-term loss of ER, function in a neuranatomically specific manner. The theoretical distinction between temporal features of oestrogen sensitivity of neuroendocrine versus behavioural function is not absolute, but is intended to stimulate new experimentation that examines temporal features of oestrogen administration. [source]


    Expression of a Rho Guanine Nucleotide Exchange Factor, Ect2, in the Developing Mouse Pituitary

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2010
    M. S. Islam
    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2,-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary. [source]


    Octopus Gonadotrophin-Releasing Hormone: A Multifunctional Peptide in the Endocrine and Nervous Systems of the Cephalopod

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2009
    H. Minakata
    The optic gland, which is analogous to the anterior pituitary in the context of gonadal maturation, is found on the upper posterior edge of the optic tract of the octopus Octopus vulgaris. In mature octopus, the optic glands enlarge and secrete a gonadotrophic hormone. A peptide with structural features similar to that of vertebrate gonadotophin-releasing hormone (GnRH) was isolated from the brain of octopus and was named oct-GnRH. Oct-GnRH showed luteinising hormone-releasing activity in the anterior pituitary cells of the Japanese quail Coturnix coturnix. Oct-GnRH immunoreactive signals were observed in the glandular cells of the mature optic gland. Oct-GnRH stimulated the synthesis and release of sex steroids from the ovary and testis, and elicited contractions of the oviduct. Oct-GnRH receptor was expressed in the gonads and accessory organs, such as the oviduct and oviducal gland. These results suggest that oct-GnRH induces the gonadal maturation and oviposition by regulating sex steroidogenesis and a series of egg-laying behaviours via the oct-GnRH receptor. The distribution and expression of oct-GnRH in the central and peripheral nervous systems suggest that oct-GnRH acts as a multifunctional modulatory factor in feeding, memory processing, sensory, movement and autonomic functions. [source]


    Mechanisms Mediating Oestradiol Modulation of the Developing Brain

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2008
    M. M. McCarthy
    The brain has been known to be a sensitive target organ for the permanent organisational effects of gonadal steroids for close to 50 years. Recent advances have revealed a variety of unexpected cellular mechanisms by which steroids impact on the synaptic profile of hypothalamic nuclei critical to the control of reproduction. This review focuses on three in particular: 1) prostaglandins in the masculinisation of the preoptic area and control of male sexual behaviour; 2) GABA in the arcuate nucleus and potential control of the anterior pituitary; and 3) non-genomic activation of phosphotydolinositol 3 (PI3) kinase and glutamate in the ventromedial nucleus, which is relevant to the control of female reproductive behaviour. The importance of cell-to-cell communication, be it between neurones or between neurones and astrocytes, is highlighted as an essential principle for expanding the impact of steroids beyond those cells that express nuclear receptors. [source]


    Increased Caloric Intake on a Fat-Rich Diet: Role of Ovarian Steroids and Galanin in the Medial Preoptic and Paraventricular Nuclei and Anterior Pituitary of Female Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2007
    S. F. Leibowitz
    Previous studies in male rats have demonstrated that the orexigenic peptide galanin (GAL), in neurones of the anterior parvocellular region of the paraventricular nucleus (aPVN) projecting to the median eminence (ME), is stimulated by consumption of a high-fat diet and may have a role in the hyperphagia induced by fat. In addition to confirming this relationship in female rats and distinguishing the aPVN-ME from other hypothalamic areas, the present study identified two additional extra-hypothalamic sites where GAL is stimulated by dietary fat in females but not males. These sites were the medial preoptic nucleus (MPN), located immediately rostral to the aPVN, and the anterior pituitary (AP). The involvement of ovarian steroids, oestradiol (E2) and progesterone (PROG), in this phenomenon was suggested by an observed increase in circulating levels of these hormones and GAL in MPN and AP with fat consumption and an attenuation of this effect on GAL in ovariectomised (OVX) rats. Furthermore, in the same four areas affected by dietary fat, levels of GAL mRNA and peptide immunoreactivity were stimulated by E2 and further by PROG replacement in E2 -primed OVX rats and were higher in females compared to males. Because both GAL and PROG stimulate feeding, their increase on a fat-rich diet may have functional consequences in females, possibly contributing to the increased caloric intake induced by dietary fat. This is supported by the findings that PROG administration in E2 -primed OVX rats reverses the inhibitory effect of E2 on total caloric intake while increasing voluntary fat ingestion, and that female rats with higher GAL exhibit increased preference for fat compared to males. Thus, ovarian steroids may function together with GAL in a neurocircuit, involving the MPN, aPVN, ME and AP, which coordinate feeding behaviour with reproductive function to promote consumption of a fat-rich diet at times of increased energy demand. [source]


    Central Regulation of the Hypothalamic-Pituitary-Adrenal Axis During Fetal Development in the Guinea-Pig

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2005
    D. Owen
    Abstract We have previously shown that the foetal guinea-pig hypothalamic-pituitary-adrenal (HPA) axis is activated near the time of parturition and that this is associated with changes in limbic glucocorticoid receptors (GR) and mineralocorticoid receptors. In the present study, we hypothesized that the foetal hypothalamic paraventricular nucleus (PVN) and pituitary contribute significantly to foetal HPA drive but that these areas remain sensitive to negative feedback by circulating glucocorticoids in late gestation. However, we observed decreased corticotrophin-releasing hormone mRNA expression in the PVN and decreased pro-opiomelanocortin (POMC) mRNA levels in the anterior pituitary with advanced gestational age. The reduction in POMC mRNA expression was likely the result of negative feedback via circulating glucocorticoids because GR mRNA was unchanged during development in the foetal pituitary. Furthermore, we found that maternally administered glucocorticoids significantly decreased foetal pituitary POMC mRNA expression in a dose-dependent manner at gestational day (gd) 62 with male foetuses being more sensitive to these effects. These findings show that the foetal HPA axis remains highly sensitive to glucocorticoid feedback even as plasma adrenocorticotropic hormone and cortisol levels are elevated at the end of gestation. [source]


    Dual Excitatory and Inhibitory Effects of Stimulation of Intrinsic Innervation of the Anterior Pituitary on Adrenocorticotropic Hormone Release in the Rat

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2004
    L.-Z. Gao
    Abstract The gland cells of the mammalian anterior pituitary are innervated by substantial amounts of nerve fibres, and there is evidence that the nerve fibres are functionally active. In the rat, the nerve fibres make typical excitatory synapses with corticotropes. The physiological significance of this synaptic relationship was investigated in the present study. The anterior pituitary of the rat was sliced and stimulated with electrical field in a chamber. The perfusate was continuously collected and immunoradioassayed for adrenocorticotropic hormone (ACTH). When the gland slices were stimulated at a high frequency of 10 Hz, there was a significant inhibition of ACTH secretion. Stimulation at a low frequency of 2 Hz resulted in a quick and transient excitation of ACTH release. The results indicate that stimulation of the nerve fibres in the anterior pituitary has dual excitatory and inhibitory effects on ACTH secretion. [source]


    Gender Differences in the Expression of Galanin and Vasoactive Intestinal Peptide in Oestrogen-Induced Prolactinomas of Fischer 344 Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2004
    G. G. Piroli
    Abstract We have previously described a sexual dimorphism in oestrogen-induced anterior pituitary tumorigenesis in Fischer 344 rats, with female tumours averaging twice the size of those of males. Neonatal androgenization of female Fischer 344 rats with 100 µg of testosterone propionate reverted that effect, causing a ,male-like' phenotype. The peptides galanin and vasoactive intestinal peptide (VIP) are possible mediators of oestrogen effects on the anterior pituitary, including hyperprolactinemia and lactotroph proliferation. To further extend our previous findings, we investigated the expression of galanin and VIP in the anterior pituitary of control and oestrogenized male, female and neonatally androgenized female Fischer 344 rats. At 3 months of age, rats were deprived of their gonads and divided into control and diethylstilbestrol (DES)-treated groups. In the anterior pituitary of control rats, galanin and VIP immunoreactive cells were absent. However, in DES-treated rats, pituitaries from normal ovariectomized females showed higher number of galanin and VIP positive cells than pituitaries from neonatally androgenized ovariectomized females and gonadectomized males. This pattern correlated with changes in anterior pituitary weight and serum prolactin. Our study suggests that sexual differences in oestrogen-induced pituitary tumorigenesis could be due to the differential expression of galanin and VIP. Furthermore, our data support the fact that neonatal exposure to androgens, as in normal males and androgenized females, may condition the response of the pituitary gland to oestrogens in adult life. [source]


    NF,B Activation in Mouse Pituitary: Comparison of Response to Interleukin-1, and Lipopolysaccharide

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003
    P. Parnet
    Abstract The mouse anterior pituitary contains both types of interleukin (IL)-1 receptors, IL-1 receptor type I (IL-1RI) and IL-1 receptor type II (IL-1RII). These receptors are expressed mainly on somatotroph cells. In the present study, the ability of the mouse pituitary to respond in vivo to IL-1 or to lipopolysaccharide (LPS) was demonstrated by measuring, with an electrophoretic mobility shift assay, the presence of an active NF,B complex in cell nuclei from pituitaries of mice injected intraperitoneally with recombinant rat-IL-1, or LPS. Using immunohistochemistry with an antibody directed against the p65 NF,B subunit, a rapid and transient NF,B response to LPS was observed. This response was present predominantly in the nuclei of glial fibrillary acidic protein (GFAP)-positive cells and F4/80-labelled cells of the posterior and the anterior pituitary 15 min after stimulation and became faint after 2 h. In comparison, the early and strong NF,B response to IL-1, treatment was localized into somatotroph cells, GFAP positive cells and F4/80-labelled cells of the posterior and anterior pituitary. Activation of NF,B in response to IL-1, was no longer apparent in IL-1RI knockout mice, confirming that this receptor is essential for the transduction of IL-1 signal in the pituitary, but remained after LPS treatment. In addition, we investigated the effect of IL-1 on target genes by measuring the mRNA and proteins synthesis of growth hormone (GH), IL-6 and IL-1ra in the pituitary and the plasma. IL-1, was shown to induce a rapid and strong synthesis of IL-6 and IL-1ra in the pituitary but failed to regulate GH contents or release. These data suggest that the pituitary is able to respond to a systemic infection via cytokine-mediated responses transduced by IL-1. [source]


    Bradykinin and Angiotensin II-Induced [Ca2+]i Rise in Cultured Rat Pituitary Folliculo-Stellate Cells

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2001
    T. Sudo
    Abstract Folliculo-stellate cells of the anterior pituitary are thought to modulate pituitary hormone secretion through a paracrine mechanism. Angiotensin II and pituitary adenylate cyclase-activating polypeptide (PACAP) have previously been shown to increase the intracellular Ca2+ concentration ([Ca2+]i) of these cells. In the present study, we examined the effects of various peptides such as bradykinin, angiotensin II, endothelin-1, PACAP, galanin and neurotensin by Ca2+ -imaging of folliculo-stellate cells in primary culture. Bradykinin and angiotensin II increased [Ca2+]i in folliculo-stellate cells. Both responses were completely suppressed by thapsigargin and were significantly suppressed by the phospholipase C inhibitor, U-73122. Ryanodine did not significantly modify the responses. A B2 antagonist and angiotensin II receptor antagonist inhibited the response induced by bradykinin and angiotensin II, respectively. Endothelin-1 and PACAP increased [Ca2+]i in fewer than 50% of folliculo-stellate cells but galanin and neurotensin did not influence [Ca2+]i in any of the folliculo-stellate cells tested. These results indicate that bradykinin and angiotensin II increase [Ca2+]i in folliculo-stellate cells by activating phospholipase C through B2 receptor and AT1 receptor, respectively, and that endothelin-1 and PACAP also increase [Ca2+]i in some folliculo-stellate cells. [source]


    Pituitary luteinizing hormone responses to single doses of exogenous GnRH in female social Cape ground squirrels exhibiting low reproductive skew

    JOURNAL OF ZOOLOGY, Issue 1 2007
    T. P. Jackson
    Abstract The Cape ground squirrel Xerus inauris is unusual among social mammals as it exhibits a low reproductive skew, being a facultative plural breeder with not all females breeding within a group. We investigated pituitary function to assess whether there was reproductive inhibition at the level of the pituitary and potentially the hypothalamus in breeding and non-breeding female Cape ground squirrels. We did so during the summer and winter periods by measuring luteinizing hormone (LH) responses to single doses of 2 g exogenous gonadotropin-releasing hormone (GnRH) and physiological saline administered to 42 females from 11 colonies. Basal LH concentrations of females increased in response to the GnRH challenge. Basal plasma LH concentrations were greater during winter, when most oestrus events are observed. However, we found no differences in plasma LH concentrations between breeding and non-breeding females. We showed that the anterior pituitary of non-breeding female ground squirrels is no less sensitive to exogenously administered GnRH than that of breeding females. We therefore concluded that the pituitary is no more active in breeding than non-breeding females. The lack of differentiation in response to GnRH suggests that either non-breeding females have ovaries that are less sensitive to LH or that they refrain from sexual activity with males through an alternative mechanism of self-restraint. [source]


    Hypothalamic input is required for development of normal numbers of thyrotrophs and gonadotrophs, but not other anterior pituitary cells in late gestation sheep

    THE JOURNAL OF PHYSIOLOGY, Issue 4 2008
    Eva Szarek
    To evaluate the hypothalamic contribution to the development of anterior pituitary (AP) cells we surgically disconnected the hypothalamus from the pituitary (hypothalamo-pituitary disconnection, HPD) in fetal sheep and collected pituitaries 31 days later. Pituitaries (n= 6 per group) were obtained from fetal sheep (term = 147 ± 3 days) at 110 days (unoperated group) of gestation and at 141 days from animals that had undergone HPD or sham surgery at 110 days. Cells were identified by labelling pituitary sections with antisera against the six AP hormones. Additionally, we investigated the colocalization of glycoprotein hormones. The proportions of somatotrophs and corticotrophs were unchanged by age or HPD. Lactotrophs increased 80% over time, but the proportion was unaffected by HPD. Thyrotrophs, which were unaffected by age, increased 70% following HPD. Gonadotrophs increased with gestational age (LH+ cells 55%; FSH+ cells 19-fold), but this was severely attenuated by HPD. We investigated the possible existence of a reciprocal effect of HPD on multipotential glycoprotein-expressing cells. Co-expression of LH and TSH was extremely rare (< 1%) and unchanged over the last month of gestation or HPD. The increase of gonadotrophs expressing FSH only or LH and FSH was attenuated by HPD. Therefore, the proportions of somatotrophs, lactotrophs and corticotrophs are regulated independently of hypothalamic input in the late gestation fetal pituitary. In marked contrast, the determination of the thyrotroph and gonadotroph lineages over the same time period is subject to complex mechanisms involving hypothalamic factors, which inhibit differentiation and/or proliferation of thyrotrophs, but stimulate gonadotrophs down the FSH lineage. Development of a distinct population of gonadotrophs, expressing only LH, appears to be subject to alternative mechanisms. [source]


    Methodology for the study of the hypothalamic-pituitary hormone secretion in cattle

    ANIMAL SCIENCE JOURNAL, Issue 1 2009
    Tsutomu HASHIZUME
    ABSTRACT Studies on the neuroregulatory mechanisms on the secretion of anterior pituitary (AP) hormones in domestic animals are important because nearly all complex physiological and metabolic processes are regulated by the AP hormones. To examine them, this article considers in vivo approaches such as the techniques of intrahypothalamic injection, intracerebroventricular injection, push-pull perfusion, and microdialysis, which have been employed in our own research group for the study in cattle. Also, in vitro approaches such as bovine AP cell culture and the AP explants superfusion system are described. This article clarifies the potential of neuroendocrine study techniques in cattle. [source]