Home About us Contact | |||
Anterior Olfactory Nucleus (anterior + olfactory_nucleus)
Selected AbstractsNew insights into the pathology of Parkinson's disease: does the peripheral autonomic system become central?EUROPEAN JOURNAL OF NEUROLOGY, Issue 2008A. Probst Recent studies in aged, neurologically unimpaired subjects have pointed to a specific induction site of the pathological process of Parkinson's disease (PD) in the region of the dorsal glossopharyngeus,vagus complex as well as in the anterior olfactory nucleus. From the lower brainstem, the disease process would then pursue an ascending course and involve more rostral brainstem areas, limbic structures, and eventually the cerebral cortex. One barrier to the acceptance of the caudal medullary structures as the induction site of PD pathology is that not all parts of the nervous system have been investigated for the presence of PD-associated lesions in cases of early asymptomatic PD. Using alpha-synuclein immunostaining, we investigated the brain, the sacral, and thoracic autonomic nuclei of the spinal cord as well as several components of the peripheral autonomic nervous system in a autopsy cohort of 98 neurologically unimpaired subjects aged 64 or more. Our data indicate that the autonomic nuclei of the spinal cord and the peripheral autonomic nervous system belong to the most constantly and earliest affected regions next to medullary structures and the olfactory nerves in neurologically unimpaired older individuals, thus providing a pathological basis for early premotor autonomic dysfunctions at a prodromal stage of PD. [source] Secreted TARSH regulates olfactory mitral cell dendritic complexityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009Ting-Wen Cheng Abstract Olfactory sensory neurons synapse with mitral cells to form stereotyped connections in the olfactory bulb (OB). Mitral cell apical dendrites receive input from olfactory sensory neurons expressing the same odorant receptor. During development, this restricted dendritic targeting of mitral cells is achieved through eliminating elaborated dendritic trees to a single apical dendrite. Through a genome-wide microarray screen, we identified TARSH (Target of NESH SH3) as a transiently expressed molecule in mitral cells during the dendritic refinement period. TARSH expression is restricted to pyramidal neurons along the main olfactory pathway, including the anterior olfactory nucleus and piriform cortex. The dynamic TARSH expression is not altered when odor-evoked activity is blocked by naris closure or in AC3 knockout mice. We also demonstrate that TARSH is a secreted protein. In dissociated OB cultures, secreted TARSH promotes the reduction of mitral cell dendritic complexity and restricts dendritic branching and outgrowth of interneurons. Dendritic morphological changes were also observed in mitral cells overexpressing TARSH themselves. We propose that TARSH is part of the genetic program that regulates mitral cell dendritic refinement. [source] Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006Daniela Noaín Abstract The dopamine D4 receptor (D4R) has received considerable interest because of its higher affinity for atypical antipsychotics, the extremely polymorphic nature of the human gene and the genetic association with attention deficit and hyperactivity disorder (ADHD). Several efforts have been undertaken to determine the D4R expression pattern in the brain using immunohistochemistry, binding autoradiography and in situ hybridization, but the overall published results present large discrepancies. Here, we have explored an alternative genetic approach by studying bacterial artificial chromosome (BAC) transgenic mice that express enhanced green fluorescent protein (EGFP) under the transcriptional control of the mouse dopamine D4 receptor gene (Drd4). Immunohistochemical analysis performed in brain sections of Drd4 -EGFP transgenic mice using an anti-EGFP polyclonal antibody showed that transgenic expression was predominant in deep layer neurons of the prefrontal cortex, particularly in the orbital, prelimbic, cingulate and rostral agranular portions. In addition, discrete groups of Drd4 -EGFP labelled neurons were observed in the anterior olfactory nucleus, ventral pallidum, and lateral parabrachial nucleus. EGFP was not detected in the striatum, hippocampus or midbrain as described using other techniques. Given the fine specificity of EGFP expression in BAC transgenic mice and the high sensitivity of the EGFP antibody used in this study, our results indicate that Drd4 expression in the adult mouse brain is limited to a more restricted number of areas than previously reported. Its leading expression in the prefrontal cortex supports the importance of the D4R in complex behaviours depending on cortical dopamine (DA) transmission and its possible role in the etiopathophysiology of ADHD. [source] Reciprocal connections between olfactory structures and the cortex of the rostral superior temporal sulcus in the Macaca fascicularis monkeyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005A. Mohedano-Moriano Abstract Convergence of sensory modalities in the nonhuman primate cerebral cortex is still poorly understood. We present an anatomical tracing study in which polysensory association cortex located at the fundus and upper bank of the rostral superior temporal sulcus presents reciprocal connections with primary olfactory structures. At the same time, projections from this polysensory area reach multiple primary olfactory centres. Retrograde (Fast Blue) and anterograde (biotinylated dextran,amine and 3H-amino acids) tracers were injected into primary olfactory structures and rostral superior temporal sulcus. Retrograde tracers restricted to the anterior olfactory nucleus resulted in labelled neurons in the rostral portion of the upper bank and fundus of superior temporal sulcus. Injections of biotinylated dextran,amine at the fundus and upper bank of the superior temporal sulcus confirmed this projection by labelling axons in the dorsal and lateral portions of the anterior olfactory nucleus, as well as piriform, periamygdaloid and entorhinal cortices. Retrograde tracer injections at the rostral superior temporal sulcus resulted in neuronal labelling in the anterior olfactory nucleus, piriform, periamygdaloid and entorhinal cortices, thus providing confirmation of the reciprocity between primary olfactory structures and the cortex at the rostral superior temporal sulcus. The reciprocal connections between the rostral part of superior temporal sulcus and primary olfactory structures represent a convergence for olfactory and other sensory modalities at the cortex of the rostral temporal lobe. [source] Changes in the connections of the main olfactory bulb after mitral cell selective neurodegenerationJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007Javier S. Recio Abstract The connections of the main olfactory bulb (OB) of the mouse were studied with iontophoretic injections of biotinylated dextran amine. To sort efferences from mitral cells and tufted cells, the Purkinje cell degeneration (PCD) mouse was used. This mutant animal undergoes a specific neurodegeneration of mitral cells, whereas tufted cells do not degenerate. The unilateral tracer injections used were small and confined largely to the OB of both PCD and control mice at P120. Seven days after tracer injection, the efferences from the OB and the centrifugal afferences from secondary olfactory structures to it were studied. Although there is a large overlap of their target fields, mitral cell axons innervated more caudal regions of the olfactory cortex than tufted cell axons, thus providing definitive evidence of the differential projections of olfactory output neurons. Additionally, an important increase in retrogradely-labeled neurons was detected in the ipsilateral anterior olfactory nucleus of the mutant animals. This was not observed in any other secondary olfactory structure, suggesting a strengthening of the centrifugal input to the OB from that central area after mitral cell loss. Moreover, we recorded a complete loss of bilaterality in the olfactory connections of the PCD mice due to degeneration of the anterior commissure. These results point to an important reorganization of this essential olfactory circuit between the anterior olfactory nucleus and the OB, and hint at a transsynaptic level of plasticity not considered previously in literature. © 2007 Wiley-Liss, Inc. [source] Olfactory pathogenesis of idiopathic Parkinson disease revisitedMOVEMENT DISORDERS, Issue 8 2008Alicja Lerner MD Abstract Idiopathic Parkinson disease (PD) is traditionally considered a movement disorder with hallmark lesions located in the substantia nigra pars compacta (SNpc). However, recent histopathological studies of some PD cases suggest the possibility of a multisystem disorder which progresses in a predictable sequence as described in Braak's staging criteria. The disease process starts in the dorsal motor nucleus of the vagus (dmX) and anterior olfactory nucleus and bulb, and from there, spreads through the brainstem nuclei to ultimately reach the SNpc, which then presents as symptomatic PD. In this article, we would like to revisit the olfactory pathogenesis of PD based on Braak's staging system and review anatomical pathways supporting such a possibility. We also suggest some biomarkers for early stages of PD. Additionally, we present and discuss the possibility that a prion-like process underlies the neurodegenerative changes in PD. © 2008 Movement Disorder Society [source] Characterization of neuropeptide Y2 receptor protein expression in the mouse brain.THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2006Abstract Neuropeptide Y (NPY), a 36-amino-acid peptide, mediates biological effects by activating Y1, Y2, Y5, and y6 receptors. NPY neurons innervate many brain regions, including the hypothalamus, where NPY is involved in regulation of a broad range of homeostatic functions. We examined, by immunohistochemistry with tyramide signal amplification, the expression of the NPY Y2 receptor (Y2R) in the mouse brain with a newly developed rabbit polyclonal antibody. Y2R immunoreactivity was specific with its absence in Y2R knockout (KO) mice and in adjacent sections following preadsorption with the immunogenic peptide (10,5 M). Y2R-positive processes were located in many brain regions, including the olfactory bulb, some cortical areas, septum, basal forebrain, nucleus accumbens, amygdala, hippocampus, hypothalamus, substantia nigra compacta, locus coeruleus, and solitary tract nucleus. However, colchicine treatment was needed to detect Y2R-like immunoreactivity in cell bodies in many, but not all, areas. The densest distributions of cell bodies were located in the septum basal forebrain, including the bed nucleus, and amygdala, with lower density in the anterior olfactory nucleus, nucleus accumbens, caudal striatum, CA1, CA2, and CA3 hippocampal fields, preoptic nuclei lateral hypothalamus, and A13 DA cells. The widespread distribution of Y2R-positive cell bodies and fibers suggests that NPY signaling through the Y2R is common in the mouse brain. Localization of the Y2R suggests that it is mostly presynaptic, a view supported by its frequent absence in cell bodies in the normal mouse and its dramatic increase in cell bodies of colchicine-treated mice. J. Comp. Neurol. 499:357,390, 2006. © 2006 Wiley-Liss, Inc. [source] |